
Scientific Programming
Wave Equation

1 The wave equation

The wave equation describes how waves propagate: light waves, sound waves, oscillating strings, wave in a
pond, ... Suppose that the function h(x, t) gives the the height of the wave at position x and time t. Then
h satisfies the differential equation:

∂2h

∂t2
= c2

∂2h

∂x2
(1)

where c is the speed that the wave propagates.

y = h(x, t)

y

x
L

Finite difference update rules Recall that the second derivative of a function can be approximated by
the central difference

f ′′(x) ≈
f(x + ∆x) − 2f(x) + f(x − ∆x)

∆x2

The same technique can be used to approximate the second derivatives:

∂2h

∂t2
≈

h(x, t + ∆t) − 2h(x, t) + h(x, t − ∆t)

∆t2

∂2h

∂x2
≈

h(x + ∆x, t) − 2h(x, t) + h(x − ∆x, t)

∆x2

Using these approximations, an approximation for the wave equation can be found replacing the second
derivatives by these approximation.

h(x, t + ∆t) − 2h(x, t) + h(x, t − ∆t)

∆t2
= c2

h(x + ∆x, t) − 2h(x, t) + h(x − ∆x, t)

∆x2

Note that one term is at time t + ∆t, which we will refer to a future time. The rest involve time t (current
time) or t − ∆t (past time). If we solve for this future time term we get:

h(x, t + ∆t) = r2(h(x + ∆x, t) + h(x − ∆x, t)) + 2(1 − r2)h(x, t) − h(x, t − ∆t) (2)

where r = c∆t

∆x
. It turns out that as long as ∆t is chosen small enough so that r < 1/2 the simulation will

be stable. Otherwise, the waves will continue to grow larger and larger.
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Matlab code for update The update rule involves past, current and future times. Suppose each is
represented by an array of length n. Each spot in the array represents the height of the array at coordinates
∆x units apart. Index n corresponds to x = 0 and index n to x = L.

for i =2:n−1
fu tu r e ( i ) = r ˆ2∗( cur r ent ( i −1) + cur rent ( i +1)) + 2∗(1− r ˆ2)∗ cur rent ( i ) − past ( i )

end

This is just rewriting the mathematical update rule in Matlab. Notice that shifting x left or right ∆x
units correspond to adding or subtracting one from the index. Also, the for loop starts at 2 and ends at
n−1. The reference to index i−1 would cause an error for i less than 2. Similarly, the reference to index
i+1 is invalid for i greater than n−1. It is important to realize that this update rule cannot be used at the
endpoints.

Using array operations the for loop above can be replaced by

f u tu r e ( 2 : n−1) = r ˆ2∗( cur r ent ( 1 : n−2)+cur rent ( 3 : n ) ) + 2∗(1− r ˆ2)∗ cur rent ( 2 : n−1) − past ( 2 : n−1)

The advantage of using these array operations is that Matlab does the calculation much faster.

2 Example: Plucked string

Consider a guitar string. Both ends are fixed at a height of 0. So the update rules for future(1) and future(n)
can set the values to 0. This addresses the issues of the previous update rules for dealing with the boundary.
Below is a complete Matlab program that simulates a plucked string.

1 dx = . 0 1 ; % Spacing o f po in t s on s t r i n g

2 dt = . 0 0 1 ; % Size o f time s t ep

3
4 c = 5 ; % Speed o f wave propagat ion

5 L = 10 ; % Length o f s t r i n g

6 stopTime = 30 ; % Time to run the s imu la t i on

7
8 r = c∗dt/dx ;
9 n = L/dx + 1 ;

10
11 % Set curren t and pas t to the graph o f a p lucked s t r i n g

12 cur rent = .5− .5∗ cos (2∗pi/L ∗ [ 0 : dx :L ] ) ;
13 past = cur rent ;
14
15 for t=0: dt : stopTime
16 % Ca l cu l a t e the f u t u r e p o s i t i o n o f the s t r i n g

17 fu tu r e (1 ) = 0 ;
18 fu tu r e ( 2 : n−1) = r ˆ2∗( cur r ent ( 1 : n−2)+cur rent ( 3 : n ) ) + 2∗(1− r ˆ2)∗ cur rent ( 2 : n−1) − past ( 2 : n−1);
19 fu tu r e (n) = 0 ;
20
21 % Set t h i n g s up f o r the next time s t ep

22 past = cur rent ;
23 cur rent = fu tu r e ;
24
25 % Plot the graph a f t e r every 10 th frame

26 i f mod( t /dt , 10) == 0
27 plot ( [ 0 : dx :L ] , cur r ent )
28 axis ( [ 0 L −2 2 ] )
29 pause ( . 0 0 1 )
30 end

31 end
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A couple of things to point out in the Matlab code. First, in lines 22-23 the current string heights are
copied to the past and that future to the current. This sets things up for the next time step. In the next
time step the current heights are what were the future and the past is what was the current. Also, in lines
26-31 a plot of the current string is displayed. The if statement ensures that it is only printed out every 10
steps. This value can be changed and will affect the speed of the animation. The pause command inserts a
small time delay to ensure the graph is displayed to the screen.

3 Example: Jump rope

Instead of fixing the ends of a rope, we can have them follow some function. For example, a two meter
long jump rope with the left end going up and down using the function sin(5t) and the right end using the
function sin(12t). Other than the starting conditions and how the left and right endpoints are handled, the
code is essentially identical.

1 dx = . 0 1 ; % Spacing o f po in t s on rope

2 dt = . 0 0 1 ; % Size o f time s t ep

3
4 c = 1 ; % Speed o f wave propagat ion

5 L = 2 ; % Length o f rope

6 stopTime = 30 ; % Time to run the s imu la t i on

7
8 r = c∗dt/dx ;
9 n = L/dx + 1 ;

10
11 cur rent = zeros (1 , n ) ;
12 past = zeros (1 , n ) ;
13
14 for t=0: dt : stopTime
15 % Ca l cu l a t e the f u t u r e p o s i t i o n o f the rope

16 fu tu r e (1 ) = sin (2∗ t ) ;
17 fu tu r e ( 2 : n−1) = r ˆ2∗( cur r ent ( 1 : n−2)+cur rent ( 3 : n ) ) + 2∗(1− r ˆ2)∗ cur rent ( 2 : n−1) − past ( 2 : n−1);
18 fu tu r e (n) = sin (3∗ t ) ;
19
20 % Set t h i n g s up f o r the next time s t ep

21 past = cur rent ;
22 cur rent = fu tu r e ;
23
24 % Plot the graph a f t e r every 10 th frame

25 i f mod( t /dt , 10) == 0
26 plot ( [ 0 : dx :L ] , cur r ent )
27 axis ( [ 0 L −8 8 ] )
28 pause ( . 0 0 1 )
29 end

30 end
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4 Example: Reflected wave

In the previous two examples we specifically identified what was happening at the boundaries. This avoided
the issue that equation 2 cannot be used at the boundary. We can also deal with this issue by having other
types of constraints on the boundary. For example, have the wave reflect perfectly off of the boundary. It
turns out a reflected wave is perpendicular to the boundary at all times. This adds the restrictions that

∂h

∂x

∣

∣

∣

x=0

= 0

∂h

∂x

∣

∣

∣

x=L

= 0

Combining these two equations with equation 1 when x = 0 gives use the following:

∂2h

∂t2
= c2

∂2h

∂x2

∂h

∂x

∣

∣

∣

x=0

= 0

Replacing the derivatives with their central difference approximations and substituting in x = 0 yields the
following:

h(0, t + ∆t) − 2h(0, t) + h(0, t − ∆t)

∆t2
= c2

h(∆x, t) − 2h(0, t) + h(−∆x, t)

∆x2

h(∆x, t) − h(−∆x, t)

2∆x
= 0

The term h(−∆x, t) does not make sense since the x coordinate is negative. However, we can solve for
this in the second equation yielding that h(−∆x, t) = h(∆x, t). Plugging this into the first and solving for
h(0, t + ∆t) yields

h(0, t + ∆t) = 2r2h(∆x, t) + (1 − r2)h(0, t) − h(0, t − ∆t)

This gives us an update rule to use on the left hand side when the wave is reflected. A similar argument can
be used when x = L to yield

h(L, t + ∆t) = 2r2h(L − ∆x, t) + (1 − r2)h(L, t) − h(L, t − ∆t)

where r = c∆t

∆x
. Below is the implementation with reflection on both sides with a “pebble” dropped in a 10

meter wide pond.

1 dx = . 0 1 ; % Spacing o f po in t s on the pond

2 dt = . 0 0 1 ; % Size o f time s t ep

3
4 c = 1 ; % Speed o f wave propagat ion

5 L = 10 ; % Width o f the pond

6 stopTime = 30 ; % Time to run the s imu la t i on

7
8 r = c∗dt/dx ;
9 n = L/dx + 1 ;

10
11 cur rent = zeros (1 , n ) ;
12 % Put a depre s s i on in the middle o f the pond

13 cur rent (3/dx :4/ dx ) = −.5+.5∗cos ( linspace (0 ,2∗pi , 4/ dx−3/dx+1)) ;
14 past = cur rent ;
15
16 for t=0: dt : stopTime
17 % Ca l cu l a t e the f u t u r e p o s i t i o n o f ponds su r f a c e
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18 fu tu r e (1 ) = 2∗ r ˆ2∗ cur rent (2 ) + 2∗(1− r ˆ2)∗ cur rent (1 ) − past ( 1 ) ;
19 fu tu r e ( 2 : n−1) = r ˆ2∗( cur r ent ( 1 : n−2)+cur rent ( 3 : n ) ) + 2∗(1− r ˆ2)∗ cur rent ( 2 : n−1) − past ( 2 : n−1);
20 fu tu r e (n) = 2∗ r ˆ2∗ cur rent (n−1) + 2∗(1− r ˆ2)∗ cur rent (n) − past (n ) ;
21
22 % Set t h i n g s up f o r the next time s t ep

23 past = cur rent ;
24 cur rent = fu tu r e ;
25
26 % Plot the graph a f t e r every 10 th frame

27 i f mod( t /dt , 10) == 0
28 plot ( [ 0 : dx :L ] , cur r ent )
29 axis ( [ 0 L −1 1 ] )
30 pause ( . 0 0 1 )
31 end

32 end

5 Example: Wave continuing on forever

In the previous example, we have perfect reflection of a wave. What if we want a wave to continue on forever?
Obviously we cannot deal with an infinitely long wave; however, we can have a boundary condition that will
not affect the wave whatsoever. The derivation of this is somewhat complicated, so we will not include it.
But if we want to have the right end not affect the wave at all then we want

h(L, t + ∆t) =
2h(L, t) + (r − 1)h(L, t − ∆t) + 2r2(h(L − ∆x, t) − h(L, t))

1 + r

where r = c∆t

∆X
. This update rule can be used to have a “transparent” boundary.

Assuming that the left hand side has the value sin(t) and right side is transparent we get the following
Matlab implementation: the right hand side is transparent

1 dx = . 0 1 ; % Spacing o f po in t s a long the x−ax i s

2 dt = . 0 0 1 ; % Size o f time s t ep

3
4 c = 1 ; % Speed o f wave propagat ion

5 L = 10 ; % Length o f reg ion cons idered

6 stopTime = 30 ; % Time to run the s imu la t i on

7
8 r = c∗dt/dx ;
9 n = L/dx + 1 ;

10
11 cur rent = zeros (1 , n ) ;
12 past = cur rent ;
13
14 for t=0: dt : stopTime
15 % Ca l cu l a t e the f u t u r e p o s i t i o n o f the wave

16 fu tu r e (1 ) = sin ( t ) ;
17 fu tu r e ( 2 : n−1) = r ˆ2∗( cur r ent ( 1 : n−2)+cur rent ( 3 : n ) ) + 2∗(1− r ˆ2)∗ cur rent ( 2 : n−1) − past ( 2 : n−1);
18 fu tu r e (n) = (2∗ cur rent (n) + ( r−1)∗past (n) + 2∗ r ˆ2∗( cur r ent (n−1)−cur rent (n)))/(1+ r ) ;
19
20 % Set t h i n g s up f o r the next time s t ep

21 past = cur rent ;
22 cur rent = fu tu r e ;
23
24 % Plot the graph a f t e r every 10 th frame

25 i f mod( t /dt , 10) == 0
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26 plot ( [ 0 : dx :L ] , cur r ent )
27 axis ( [ 0 L −2 2 ] )
28 pause ( . 0 0 1 )
29 end

30 end

Notice that when this is run, the wave moves from left to right and seems to continue past the right
boundary.

6 Example: Sound wave going from a small tube into a large one

Our final example demonstrates what happens when a sound traveling down a small tube enters a larger one.
As the pressure wave hits the larger tube, some gets reflected and some gets transmitted. The transmitted
sound is of lower amplitude since it is spread out over a wider area. This approximation only works well for
narrow tubes and low frequencies. In larger tubes you need to keep track of sound reflecting off of the sides
of the tubes, which we will ignore.

R

S
T

We will use three separate waves: S the source (or input wave), R the wave that is reflected back and T ,
the transmitted wave. Assume that the smaller tube has area A1, the larger A2 and both tubes have length
L. Each of the three waves are governed by the wave equation. And each will have a transparent end. The
start of the source will be a 1 kHz signal. And the starting point of the reflected and transmitted wave can
be determined by the following formulas

R(0, t + ∆t) =
(1 −

A2

A1

)S(L, t + ∆t) − S(L, t − ∆t) + R(0, t − ∆t) + A2

A1

T (0, t − ∆t))

1 + A2

A1

T (0, t + ∆t) =
2S(L, t + ∆t) − S(L, t − ∆t) + R(0, t − ∆t) + A2

A1

T (0, t − ∆t)

1 + A2

A1

This formulas are derived using acoustically laws that we will not go into.
The following Matlab script implements these equations. Note that each of the three waveforms has a

past, current and future version.

1 dx = . 0 1 ; % Spacing o f po in t s a long the tube

2 dt = . 00001 ; % Size o f time s t ep

3
4 c = 340 ; % Speed o f sound

5 L = 1 ; % Length o f each tube

6 stopTime = . 1 ; % Time to run the s imu la t i on

7
8 A1 = 5 ;
9 A2 = 15 ;

10
11 r = c∗dt/dx ;
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12 n = L/dx + 1 ;
13
14 currentS = zeros (1 , n ) ;
15 pastS = zeros (1 , n ) ;
16 currentR = zeros (1 , n ) ;
17 pastR = zeros (1 , n ) ;
18 currentT = zeros (1 , n ) ;
19 pastT = zeros (1 , n ) ;
20
21 for t=0: dt : stopTime
22 % Update the i n t e r i o r s and end o f each us ing the wave equat ion

23 futureS ( 2 : n−1) = r ˆ2∗( currentS ( 1 : n−2)+currentS ( 3 : n ) ) + 2∗(1− r ˆ2)∗ currentS ( 2 : n−1) − pastS ( 2 : n−
24 futureS (n) = (2∗ currentS (n) + ( r−1)∗pastS (n) + 2∗ r ˆ2∗( currentS (n−1)−currentS (n)))/(1+ r ) ;
25
26 futureR ( 2 : n−1) = r ˆ2∗( currentR ( 1 : n−2)+currentR ( 3 : n ) ) + 2∗(1− r ˆ2)∗ currentR ( 2 : n−1) − pastR ( 2 : n−
27 futureR (n) = (2∗ currentR (n) + ( r−1)∗pastR (n) + 2∗ r ˆ2∗( currentR (n−1)−currentR (n)))/(1+ r ) ;
28
29 futureT ( 2 : n−1) = r ˆ2∗( currentT ( 1 : n−2)+currentT ( 3 : n ) ) + 2∗(1− r ˆ2)∗ currentT ( 2 : n−1) − pastT ( 2 : n−
30 futureT (n) = (2∗ currentT (n) + ( r−1)∗pastT (n) + 2∗ r ˆ2∗( currentT (n−1)−currentT (n)))/(1+ r ) ;
31
32 % Set the va l u e s f o r the s t a r t o f each wave

33 futureS (1 ) = sin (2∗pi ∗1000∗ t ) ;
34
35 futureR (1) = ( (1−A2/A1)∗ fu tureS (n) − pastS (n) + pastR (1) + A2/A1∗pastT (1) )/(1+A2/A1 ) ;
36 futureT (1) = ( 2∗ fu tureS (n) − pastS (n) + pastR (1) + A2/A1∗pastT (1) )/(1+A2/A1 ) ;
37
38 % Set t h i n g s up f o r the next time s t ep

39 pastS = currentS ;
40 currentS = futureS ;
41 pastR = currentR ;
42 currentR = futureR ;
43 pastT = currentT ;
44 currentT = futureT ;
45
46 % Plot the graph a f t e r every 100 th frame

47 i f mod( t /dt , 100) == 0
48 plot ( [ 0 : dx :L ] , currentS , [ L:−dx : 0 ] , currentR , [ L : dx :2∗L ] , currentT )
49 axis ( [ 0 2∗L −2 2 ] )
50 legend ( ’ Source s i g n a l ’ , ’ Re f l e c t ed s i g n a l ’ , ’ Transmitted s i g n a l ’ )
51 pause ( . 0 0 1 )
52 end

53 end

In this program c is the speed of sound (about 340 m/s) and the values for dt and dx are chosen small
enough to represent a 1 kilohertz signal well.
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