Convolutional Neural Networks for Sentence Classification

Yoon Kim, 2014

발표자 : 이은주



Convolutional Neural Networks for Sentence Classification

Y Kim 저술 · 2014 · 16830회 인용 — Authors: **Yoon Kim**. Download a PDF of the paper titled **Convolutional Neural Networks for Sentence Classification**, by **Yoon Kim**. Download PDF.

- YOON KIM은 하버드 대학교에서 컴퓨터 과학 박사 학위를 취득 후 현재 MIT 조교수로 재직 중
- CNN을 사용한 NLP의 성능을 입증하여 주목을 받은 논문

Abstract

We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.

- 문장 수준의 분류를 위해 pre-trained 단어 벡터와 CNN을 사용한다.
- Fine-tuning을 통해 특정 task의 벡터를 학습하는 것은 성능 향상 시킬 수 있다.
- 4개의 간단한 CNN 모델을 사용하였다.
- 감정 분석과 질문 분류를 포함한 7개의 데이터셋 중 4개에서 최고의 성능을 보여주었다.

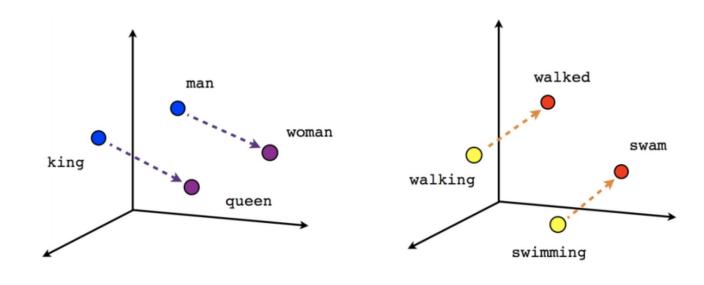
Sentence Classification Task

- : 감정 분류
- ex) 이번 논문은 대박이야! → 긍정
- ex) 이번 음악 너무 별로인데? → 부정
- : 주제 분류
- ex) T1, 전승으로 1황 '등극' → E-스포츠
- ex) 엘지에너지솔루션 따상 가나? → 경제
- : 질문 분류
- ex) 지점 A에서 지점 B까지의 거리가 어떻게 되나요? → (거리) NUMERIC
- ex) 한국의 수도는 어디인가요? → (도시) LOCATION

1. Introduction

- 딥 러닝 모델은 컴퓨터 비전과 음성 인식에서 뛰어난 성과를 보였다.
- 자연어 처리(NLP)에서는 단어 벡터 표현 학습과 분류를 위한 벡터 합성에 대한 연구가 주로 이루어지고 있다.
- 단어 벡터는 원핫인코딩 등을 통해 저차원공간으로 투영되며, 투영된 차원에서 의미적 특징을 인코딩하는 특징 추출기이다.
- dense representations에서는 의미론적으로 가까운 단어들은 유클리드나 코사인 거리의 저차원 벡터 공간에서도 가깝게 위치한다.
- 컴퓨터 비전을 위해 발명된 CNN 모델은 NLP에도 효과적이라고 밝혀졌다.
- 특히 의미론적 파싱, 검색 쿼리 검색, 문장 모델링 및 기타 전통적인 NLP 작업에서 우수한 결과를 얻었습니다.

- one-hot encoding은 0과1로 이루어져 행렬의 값이 대부분이 0인 sparse representation(희소표현)으로 공간 낭비를 일으킨다.
- Dense Representation(밀집표현)되는 word embedding인 word2vec을 사용해 각 차원의 값이 실수값을 가지는 벡터로 표현한다.
- 각 단어는 고정된 차원을 갖게 되며, Distributed representation(분산표현)되고, 벡터간 유사도 계산을 할 수 있게 도와준다.
- Word2vec은 특히 단어 위치로 학습을 시켜서 단어를 벡터 공간에 직관적으로 매핑하여, 특정 방향들이 의미나 문맥을 보존한다.



Male-Female

Verb tense

1. Introduction

- 이 연구에서는 비지도 학습 신경망 언어 모델로부터 얻은 단어 벡터 위에 단일 컨볼루션 레이어를 사용하여 간단한 CNN 모델을 훈련한다.
- 이 벡터는 Google News의 1,000억 단어에서 훈련되었으며 공개적으로 이용할 수 있다.
- hyperparameter의 조정이 거의 없음에도 불구하고 간단한 모델로 우수한 결과를 보여준다.
- 이는 미리 학습된 벡터는 'universal' 특성 추출기로서 다양한 분류 task에 활용될 수 있다는 것을 시사한다.
- fine-tuning을 통해 작업 특정 벡터를 학습하면 더욱 향상된 결과를 얻을 수 있다.

- Input → Convolution → Max pooling → Fully connected layer

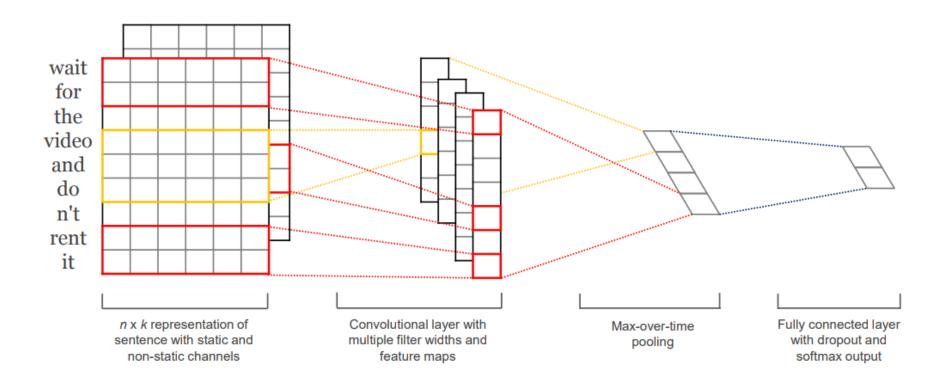
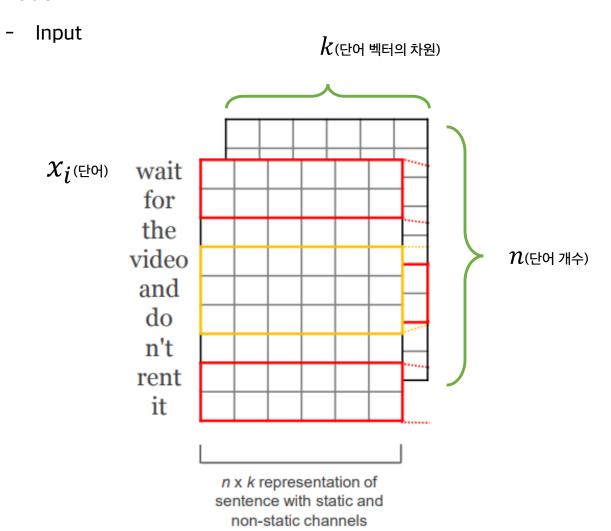


Figure 1: Model architecture with two channels for an example sentence.

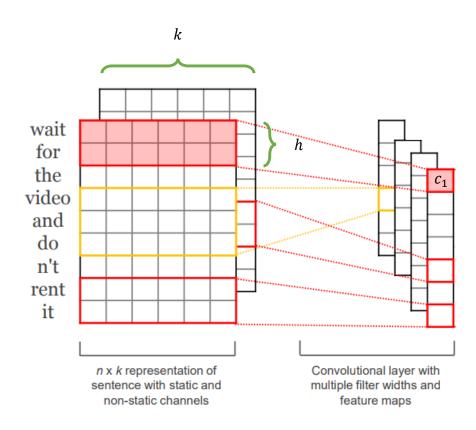


$$\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n, \tag{1}$$

 \oplus : concatnation

Wait for the video and do not rent it = $x_{1:9}$

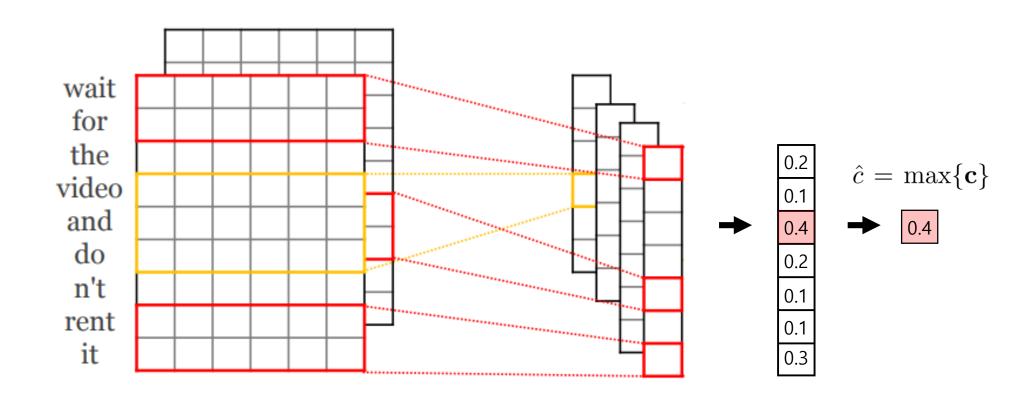
Convolution filter(window)



$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b). \tag{2}$$

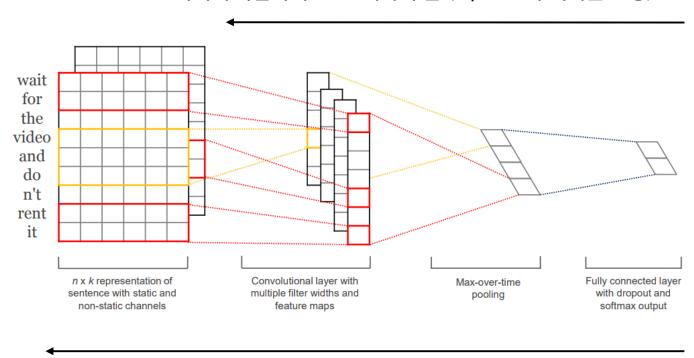
- Convolution을 위해 h * k 크기의 filter(window)를 만들어준다
- 단어 벡터의 길이인 k는 고정
- h를 조절하여 filter(window) 크기 설정 예) h 가 2일 경우 2개의 단어 씩 특징을 추출하는 것
- 이를 통해 특징 c_i 를 얻음

Max over time pooling(max pooling)



- static
- non-static

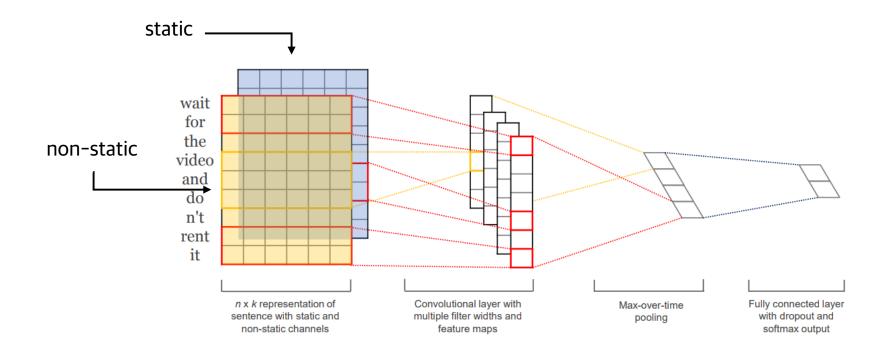
Convolution까지의 학습하여 static이라 부름 (input 단어 벡터를 고정)



Input되는 단어 벡터까지도 학습의 대상으로 포함시켜 이를 non-static이라고 부름

참고 : https://www.youtube.com/watch?v=IRB2vXSet2E

- Multichannel



3.3 Model Variations

- CNN-rand: 기준이 되는 모델, word2vec를 사용하지 않음
- CNN-static: word2vec를 사용한 모델
- CNN-non-static: CNN-static와 동일하지만, word2vec까지 학습에 사용(fine tuning)한 모델
- CNN-multichannel: static, non-static(fine tuning)을 합친 모델로 multi channel을 가짐

3. Datasets and Experimental Setup

- MR: 각 리뷰 당 하나의 문장을 가진 영화 리뷰 데이터셋. 긍정/부정에 대한 레이블 제공
- SST-1: MR의 확장 버전. 매우 긍정적, 긍정적, 중립적, 부정적, 매우 부정적에 대한 레이블 제공
- SST-2: SST-1과 동일하지만 중립적인 리뷰 제거 후 이진 레이블 제공
- Subj: 주관성 데이터셋. 문장을 주관적 또는 객관적으로 분류하는 레이블 제공
- TREC: TREC 질문 데이터셋으로, 6가지 질문 유형 (사람, 위치, 숫자 정보 등)으로 질문을 분류
- CR: 다양한 제품 (카메라, MP3 등)의 고객 리뷰 데이터셋. 긍정적/부정적 리뷰를 예측
- MPQA : 짧은 어구에 대한 의견 분류 데이터셋. 긍정,부정, 중립, 둘 다에 대한 레이블

3.1 Hyperparameters and Training

- ReLU(Rectified Linear Unit)
- filter windows (h) of 3, 4, 5 with 100 feature maps
- dropout rate (p) of 0.5
- I2 constraint (s) of 3
- mini-batch size of 50
- stochastic gradient descent over shuffled mini-batches
- Adadelta update rule

3.3 Model Variations

- 4개의 모델과 기존 모델들과 성능 비교
- 다른 모델들보다 좋은 성능, 7개중 4개가 제일 좋은 성능을 보임

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	–	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0		

3.3 Results and Discussion

- 기준 모델(CNN-rand)은 그 자체로는 성능이 좋지 않다
- 사전 훈련된 벡터를 사용하였을 때 성능 향상을 예상했지만, 그 규모에 놀랐다.
- 이러한 결과는 사전 훈련된 벡터가 좋은 'universal' 특징추출기이며, 다양한 데이터셋에서 활용될 수 있다는 것을 말한다.
- 그리고 non-static 모델이 가장 좋은 성능을 보였기 때문에 fine-turing이 중요한 요인으로 작용된다고 봄

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4

4.1 Multichannel vs. Single Channel Models

- Multichannel이 과적합을 방지하고 더 잘 작동할 것으로 기대했었다.(사전 학습된 벡터가 원래 값에서 너무 멀리 벗어나지 않게 해서)
- fine-tuning process를 규제하는 추가 연구가 필요하다.

예를 들어, non-static 부분에서 대해 Multichannel 대신, 훈련 중에 수정할 수 있는 추가 차원을 사용하는 것으로 single channel을 유지하는 것.

4.2 Static vs. Non-static Representations

	Most Similar Words for						
	Static Channel	Non-static Channel					
	good	terrible					
bad	terrible	horrible					
vaa	horrible	lousy					
	lousy	stupid					
good	great	nice					
	bad	decent					
	terrific	solid					
	decent	terrific					
	os	not					
n't	ca	never					
nt	ireland	nothing					
	wo	neither					
	2,500	2,500					
!	entire	lush					
•	jez	beautiful					
	changer	terrific					
	decasia	but					
	abysmally	dragon					
,	demise	а					
	valiant	and					

- SST-2 데이터셋에서 코사인 유사도를 기반으로 한 가장 가까운 단어 상위 4개
- static 모델에서는 bad에 대해 good이 아마도 구문적으로 동등하다고 생각되고 있다.
- fine-tuning 된 non-static 모델에서는 의미적으로 유사한 단어들로 구성
- fine-tuning 에 포함되지 않는 token의 경우, fine-tuning 을 통해 더 의미 있는 표현을 학습할 수 있다.

4.3 Further Observation

- Kalchbrenner 등(2014)는 CNN-rand와 본질적으로 동일한 아키텍처의 CNN을 사용했지만, SST-1 데이터셋에서 37.4%를 얻었다.
- CNN-rand은 45.0%의 결과를 얻었는데, 이는 더 많은 필터크기과 특성맵을 가지고 있기 때문이라고 설명된다.

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4

- Dropout이 매우 효과적이었다. Dropout은 일관되게 성능을 상대적으로 2%에서 4% 향상시켰다.
- Word2vec에 없는 단어는 Word2vec와 동일한 분산을 가지도록 샘플링 함으로써 약간의 성능 향상을 얻었습니다.
- Adadelta는 Adagrad와 유사한 결과를 주지만 epochs이 더 적게 듦.

5. Conclusion

- 이 연구는 word2vec 기반 CNN 실험이다
- hyperparameters의 조정이 적고, 간단한 CNN으로 놀랄 만한 성과를 얻었다.
- 이를 통해 단어 벡터의 unsupervised pre-training이 자연어 처리에서 중요한 구성 요소임을 입증한다.

감사합니다.