

A pilot scale study for semiconductor wasewater reuse and ultrapure water production

July. 19, 2021 Chong Min Chung¹

¹Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Korea

• Day 1_Technical Program

Mini-sympos	ium S2-M2 Hydro-environment in Cities-Water Cycle, Metabolism and Management
	Chair: Yongju Choi (SNU)
S2-1	14:50-15:05 Feasibility of waste heat recovery from sewage in metropolitan cities Jinsung An
S2-2	15:05-15:20 A pilot scale study for semiconductor wastewater reuse and ultrapure water production Chong Min Chung
S2-3	15:20-15:35 Stochastic approaches for risk and resilience of groundwater systems under uncertainty Jinwoo Im
S2-4	15:35-15:50 Development and application of a polar organic chemical integrative sampler (POCIS) for monitoring micropollutants in a drinking water treatment plant Hyun–ah Kwon, Yongju Choi
S2-5	15:50-16:05 Oxidation of aldehydes found in finished recycled wastewater with heterogeneous transition metal catalysts and dissolved oxygen Euna Kim, Georgia Cardosa, Daniel L. McCurry
S2-6	15:50-16:05 Development of sensor technologies for smart water quality management in future cities

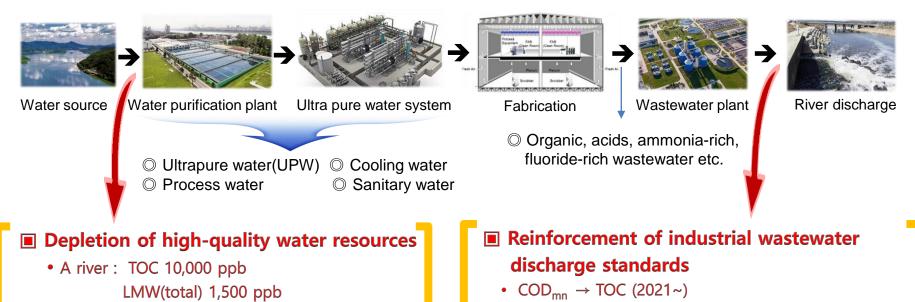
Jong Kwon Choe, Junyoung Park

The 9th International Symposium on Environmental Hydraulics

> July 19(Mon) - 21(Wed), 2021 Seoul National University, SEOUL, KOREA

ISEH 2021

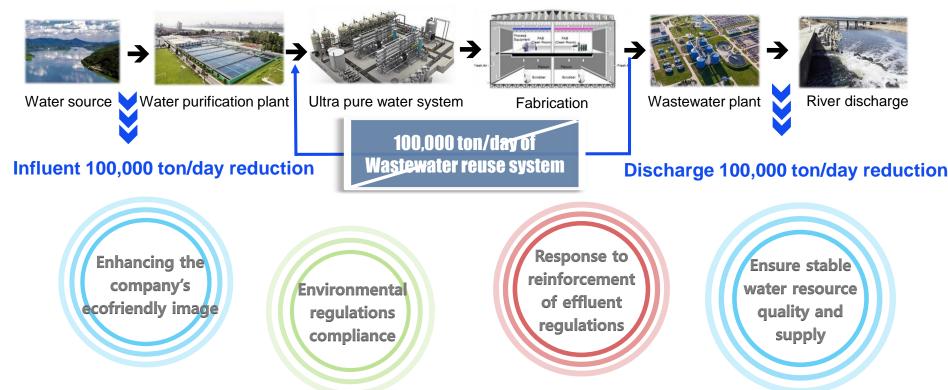
Advances in Hydro-Environments for an Era of Big Change


1. Introduction

Urea 250 ppb,

B 0.1 ppb

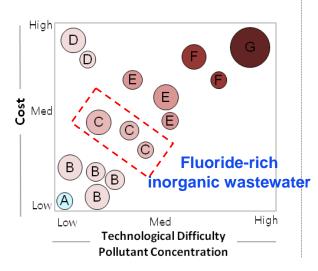
[Water flow in semiconductor manufacturing facility]



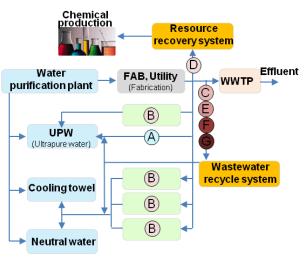
- Integrated pollution Prevention and Control Directive (2021~)
 - TN in effluent 20ppm \rightarrow 10ppm
- TDS(Sulfate & chloride ions) regulation

1. Introduction

[Water flow in semiconductor manufacturing facility including a westewater reuse system]



Development procedure of wastewater recycle technology


① Identifying the types of wastewater (Water quality map)

- Selecting target wastewater (Low-level to High-level of pollutants) . A > B > C > D > E > F > G

 ② Selecting the users of the reuse water
 (Water balance map)

Water quality and amounts required by users
UPW : TOC < 100ppb, Urea < 10ppb
Cooling water : TOC < 5ppm, Ca²⁺ < 5ppm
Neutral water : TOC < 2ppm, Ca²⁺ < 10ppm

③ Designing the reuse system

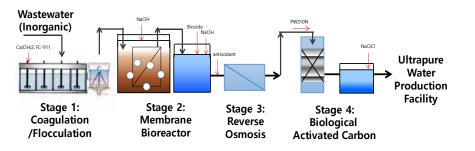
				Reuse
Waste	Pre -	Main -	Post -	water
water	treatment	treatment	treatment	
- B : H - C : H	Reuse with 3 Reuse with 4	out treatmen 3 stage treat 4 stage treat covery from	ment ment	r

Physical	Chemical	Electro- chemical	Biological
Activated carbon filtration	Advanced oxidation	Electro Oxidation	Aerobic
Sedimentation	Coagulatio/ Flocculation	Electro Coagulation	Anoxic
Flotation	Disinfection	Electro Flotation	Anaerobic
Membrane Filtration	Oxidation	Capacitive deionization (CDI)	MBR
Air stripping	Breakpoint chlorination	Electrodialysis (ED)	BAC (Biological activated carbon

Table 1. Compositions of the Fluoride-richinorganic wastewater

Parameter	neter Influent		Influent
pН	2.2	Na	15.6
Conductivity	4,505	AI	0.018
SS	4.1	Fe	0.289
VSS	0.7	Mn	0.008
TOC	5.8	W	25.8
COD _{cr}	63.7	Zn	0.209
T-N	13.1	T-Si	15.7
NH ₃ -N	11.4	Ionic-Si	14.3
T-P	0.3	Acetaldehyde	0.947
PO ₄ -P	0.1	Nitromethane	0.182
F	542	Methanol	0.846
CI	8.4	Ethanol	1.678
SO ₄	408	Acetone	0.697
Ca	0.33	IPA	0.995
Mg	0.06	Acetonitrile	0.142

Target water quality :


Feed water for UPW production facility

- TOC < 100 ppb
- Urea < 10 ppb
- Turbidity < 0.2 NTU
- Conductivity < 130 μ S/cm
- T-N < 4 ppm
- T-P < 0.2 ppm
- B < 0.1 ppm

2. Materials & Methods

Fig. 1. The four-stage wastewater reuse system

Stage 1	Value		
Capacity	200 m ³ /h		
Chemical agents	Ca(OH) ₂ , PAC, Polymer		
Stoichiometric molar ratio	[Ca ²⁺]/[F ⁻] of 0.7		
рН	7± 0.1		
Stage 2	Value		
Capacity	1.7 m³/h		
Membrane	PVDF hollow fiber UF membrane		
Membrane area	94.8 m ² (net flux at 18 LMH)		
Internal recycle	200%		
operation cycle	Filtration: 14.5 min, Pause 30 sec		
HRT	8 hr		
Operation Condition	(a) Normal, (b) high TOC loading, (c) Low TOC loading		

Stage 3	Value	
Capacity	0.72 m³/h	
Membrane	Polyamide RO	
Membrane area	30 m ²	
applied inlet pressure	0.6 to 1.5 Mpa	
Recovery rate	75%	
Prefilter pore size	2 µm	
Chemical agents	antiscalants (PW301N) biocides (NaOCI)	
CIP chemical agents	NaOH, NaOCI, and citric acid	
Stage 4	Value	
Capacity	0.4 m ³ /h	
Activated carbon	coal-based granular	
Contact time	40 min	
Backwash	20 min every 7 days	
Recovery rate	75%	
DO	7.1~7.5 mg/L	
Operation Condition	(a) Normal, (b) high TOC loading,	

(c) Low TOC loading

3. Results – Stage1 (Performance of Coagulation/Flocculation)

Table 2. The average concentrations of major water quality indicators before and after the coagulation/flocculation unit.

Parameter	Influent	After Stage 1
рН	2.2	7.6
Conductivity	4,505 🚽	811
SS	4.1	4.0
VSS	0.7	0.8
тос	5.8	4.9
COD _{cr}	63.7	14.1
T-N	13.1	12.3
NH ₃ -N	11.4	11.1
T-P	0.3	0.4
PO ₄ -P	0.1	0.0
F	542 -	12.2

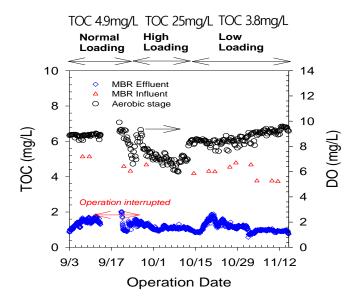
 The effluent marked average F⁻ concentration of 12.2 mg/L-1, with removal rates greater than 98% 					
0.00 122					
Mg 0.06 6.87					

	Parameter	Influent	After Stage 1				
	Nia	45.0	44 E				
2	2) More than 80% decrease in conductivity —						
	expected mitigation of inorganic fouling						
	on the RO mer	nbrane					
	Mn	0.008	0.161				
	W	25.8	9.9				
	Zn	0.209	0.018				
	T-Si	15.7	15.0				
	Ionic-Si	14.3	13.7				
	Acetaldehyde	0.947	0.136				
	Nitromethane	0.182	0.169				
	Methanol	0.846	1.023				
	Ethanol	1.678	0.872				
	Acetone	0.697	0.522				
	IPA	0.995	0.697				
	Acetonitrile	0.142	0.133				

F⁻ removal mechanisms

Chemicals: Ca(OH)₂, PAC, Polymer

- $Ca(OH)_2 + 2F^- + 2H^+ \rightarrow CaF_2 + 2H_2$
- $AI^{3+} + 3H_2O \leftrightarrow AI(OH)_3 + 3H^+$
- $AI^{3+} + 6F^- \leftrightarrow AIF_6^{3+}$
- $AIF_6^{3+} + 3Na^+ \leftrightarrow Na_3AIF_6$



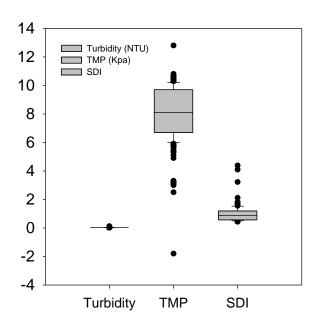
- \blacktriangleright [Ca²⁺]/[F⁻] of 0.5 \rightarrow F⁻ > 20~25 mg/L
- ▶ [Ca²⁺]/[F⁻] of 0.7 → F⁻ < 13 mg/L

3. Results – Stage2(Performance of Membrane Bioreactor)

Fig. 1. TOC removal under loading fluctuations

- 1 Effluent TOC concentration was fairly stable throughout the whole operation
- Normal loading : 0.8 1.8 mg/L
- High TOC loading: 0.9 1.3 mg/L
- Low TOC loading : 0.6 1.3 mg/L

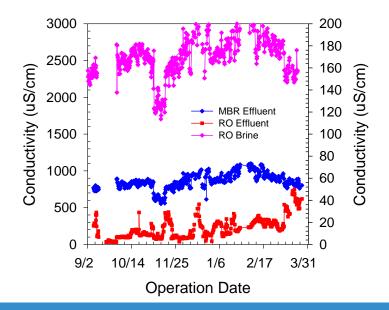
Table 2. GC/MS analysis on the primary organic constituents


Devementer	Normal loading		High loading		Low loading	
Parameter	Influent	Effluent	Influent	Effluent	Influent	Effluent
Acetaldehyde	0.321	<0.01	0.332	<0.01	0.112	<0.01
Nitromethane	0.155	0.026	0.141	<0.01	0.144	<0.01
Methanol	0.623	0.054	0.871	<0.01	0.748	0.033
Ethanol	1.41	0.011	2.57	<0.01	1.29	0.013
Acetone	0.397	<0.01	0.387	<0.01	0.485	<0.01
IPA	0.914	<0.01	0.726	<0.01	0.42	<0.01
Acetonitrile	0.107	0.01	0.101	<0.01	0.108	<0.01
Methylethylketone	0.01	<0.01	<0.01	<0.01	0.01	<0.01

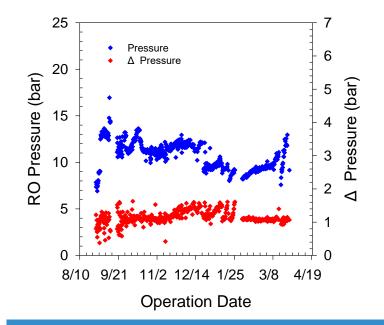
② GC/MS analysis on the effluent indicated that the primary organic constituents in the influent were almost perfectly transformed in the MBR regardless of the operational conditions

→ MBR were found to be appropriate pretreatment method to minimize the potential organic fouling in the following RO unit

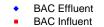
Fig. 2. Turbidity, TMP, SDI₁₅ during whole operation

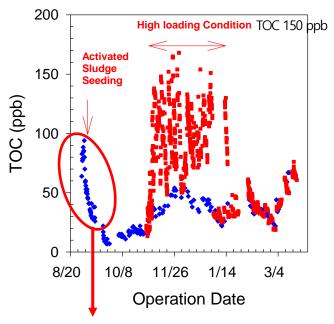

 In spite of fluctuation in the SS concentration of stage 1 effluent between 1.2 and 6.6 mg L-1 (4.0 mg L-1 on average), the SS concentration of MBR effluent was always below detection limit.

② Permeate turbidity and SDI₁₅ were consistently less than 0.03 NTU and 2.1, respectively to minimize the impact of suspended solids or colloidal particles on RO membrane fouling in stage 3


③ MBR unit could operate stably with flux at 20.7 LMH with relatively stable TMP near 9 kPa during the whole operation period.

- dTMP/dt was less than 0.5 kPa/d and, thus, the MC cycle was 1 month
- MC procedure with NaOCI (200 mg/L) followed by citric acid (2,000 mg/L)


Rejection of conductivity ranges 96.9 and 99.7% (99.4% on average)
 TOC concentration in effluent below 34 ppb (17.6 ppb on average)
 → Effluent water quality actually met the criteria for feed water of UPW production facility.



- ① Permeate flux of 18 LMH with recovery of 75%
- ② TMP values reduced to the initial value (10 bar) by CIP cleaning with H_2SO_4 solution (pH = 1.5)

3. Results – Stage4(Performance of Biological Activated Carbon)

- ② Effluent TOC concentration was fairly stable throughout the whole operation
- ③ When TOC loading increased up to 150 ppb by addition of external carbon, effluent TOC concentration marginally increased up to 50 ppb, while the TOC removal efficiency was elevated to 60 - 78%.
- → Final BAC unit process could fully buffer a malfunction of stage 1 3
 or a fluctuation in the pollutants loading of influent wastewater

 During this period, attached biofilm formation on the surface of activated carbon granules and acclimation could proceed.

Conclusion

- 1. In this work, the four-stage wastewater reuse system with coagulation/flocculation(CF), MBR, RO, and BAC unit process was evaluated to reuse a fluoride-rich inorganic semiconductor wastewater for the feed of ultrapure water production facility.
- 2. The combined CF and MBR were found to be appropriate pretreatment method to minimize the potential fouling in the following RO unit. Upon the pretreatment, the dominant foulants on the RO membrane surface were organic compounds which could be effectively removed by chemicals-in-place based on mixed sulfuric/citric acid.
- 3. While almost complete rejection of ionic species was observed in the RO unit, liquid chromatography with organic carbon detector revealed that more than 45% of the remaining total organic carbon (TOC) could be removed by the BAC treatment.
- 4. The TOC concentration in the final effluent was averaged to 0.35 ppb to satisfy the criteria to feed the UPW facility.
- 5. Our four-stage wastewater treatment system should be more competitive upon upcoming increases in public cost for water supply and wastewater treatment along with stricter environmental regulations.

Thank you for Attention!!

cmchung@jj.ac.kr