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PLS회귀를 이용한 포지셔닝맵의 구축
Building Positioning Map by PLS Regression

이성근∙Yi, Seong Keun, 최지호∙Choi, Jiho, 이종호∙Lee, Jong-Ho

Partial Least Squares (PLS) 회귀 방법은 관찰치의 수보다 변수의 수가 더 많을 때 사용할 수 있는 다변량

분석기법이다. 뿐만 아니라 PLS회귀는 주성분을 추출할 때 반응변수와 설명변수를 동시에 고려하기 때문에 주

성분회귀분석보다 예측력이 더 우월하다. 이 논문에서는 PLS방법으로 얻어진 주성분에 각 변수(속성)를 회귀시

켜 각 변수의 벡터를 구하였으며, 각 주성분점수를 활용하여 관찰치(브랜드)들의 좌표를 구하여 각 관찰치들의 

포지션을 지도상에 표시할 수 있도록 하였다. 얻어진 관찰치들의 포지션은 각 변수의 위치와 교차하여 해석할 수 

있어 각 관찰치의 특성을 파악할 수 있으며, 각 설명변수들도 각 반응변수들과 어떻게 관계를 가질 수 있는가도 

지도상에서 해석이 가능하다.

핵심주제어: PLS, Partial Least Squares, PLSR, PLS Regression, singular value decomposition, 

PCR, Principal Component Regression 
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ABSTRACT

Partial Least Squares regression(PLSR) proposed by Herman Wold in 1966 has been used as very 

valuable method to predict a set of response variables by a set of explanatory variables. PLSR is very 

useful for building a predictive model when variables are many and highly correlated. Multiple 

regression analysis also useful tool for building a prediction model. But it has much limitation when 

variables are many and highly correlated. In such cases, even though we can build a prediction model, it 

will fail to predict new data well (Tobias, 2007). Especially when the number of variables is much larger 

than the number of observations, the phenomenon of so-called 'overfitting' occurs. When the explanatory 

variables are highly correlated, one approach to overcome the problem is to remove the some of highly 

correlated explanatory variables. Another approach is to reduce the explanatory variables into small 

number of variables which have no correlations. The concept of PLS is to extract small numbers of latent 

variables which explain for highly correlated many variables. In that sense, PLS is a indirect modelling. 

But the way of extracting latent variables is different from the traditional method, 

The superiority of PLSR to PCR(Principal Component Regression) is very well known. Ryan et. al 

(1999) showed empirically that PLSR is better than PCR in prediction the response variable. They 

compared three models with mediators and collinearity among the response variables, for example, 

regression, PCR, and PLSR. As the hypothesized conceptual model had moderators and collinearity in 

their study, the regression model was not germane to the research objective. Hence their focus was on the 

comparison of PCR, with PLSR. Even though the fact that there was a difference in estimating the 

coefficients between PCR and PLSR was very confusing, But prediction of PLSR was better than PCR. 

Even though PLSR began in social sciences, it's uses are extended to the various fields like 

chemometrics (Westerhuis 1998; Wagon & Kowalski 1988; Geladi & Kowalski 1986) or sensory 

evaluation (Martens & Naes 1989), marketing (Abdi 2003; Chin et al. 2003; Graver, et al 2002; Ryan et 

al 1999; Fornell and Bookstein 1982; Japal 1982) and design (Han and Yang 2004). Interestingly, 

similarly to this research, Husson & Pages (2005) proposed the way of corresponding additional variables 

by the use of PLSR coefficients instead of the linear regression coefficients in Prefmap technique.   

Huh and colleagues proposed several quantification methods using traditional multivariate data 

analysis techniques (Kim, 2000; Yang, 1998; Park and Huh 1996a, b; Han, 1995). The quantification 

methods proposed by them are endeavors to reduce the multivariate data with interrelationship and to 

represent or to plot them onto the low dimensional space. Projection pursuit stands for those methods. It 

aims to analyze the characteristics and structure of data through projecting the multivariate data onto the 

lower dimensional space and through analyzing the projection. In that sense, quantification method 

means a technique for building map in marketing.

The purpose of this research is to propose the algorithm for building positioning map by PLSR. The 
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basis of the algorithm is a singular value decomposition. To derive the form of singular value 

decomposition, Lagrange multiplier method function was adopted. After components are extracted via 

singular value decomposition, the relationships between components and variables can be gotten by 

regressing variables on the components. The regression coefficients are the coordinates of the variables. 

Additionally we can get score vectors of components for observations from the same process. They are 

the coordinates of the observations. That is, The variables and observations can be positioned on the 

simple space generated by PLSR.

The quantification technique for PLS method gives us the better understanding of structure of variables 

and observations. The limitation of this study is the situation when there are more than 2 sets of data. In 

that case it is very to difficult to solve the Lagrange multiplier method function due to the many 

constraints in the equation. Thus we should consider another method of extracting the principal 

components due to the many constraints in the equation. 

Key words: PLS, Partial Least Squares, PLSR, PLS Regression, singular value decomposition, 

PCR, Principal Component Regression 
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Ⅰ. Backgrounds and Purposes

Partial Least Squares (PLS) proposed by Herman Wold in 

1966 has been used as very valuable method to predict a set 

of response variables by a set of explanatory variables. 

Even though PLS began in social sciences, it's uses are 

expanded to various fields like chemometrics (Westerhuis 

1998; Wagen & Kowalski 1987; Geladi & Kowalski 1986) 

or sensory evaluation (Martens & Naes 1989), marketing 

(Abdi 2003; Chin et al. 2003; Graber, et al 2002; Ryan et al 

1999; Fornell and Bookstein 1982; Japal 1982) and design 

(Han and Yang 2004). Interestingly, similarly to this 

research, Husson & Pages (2005) proposed the way of 

corresponding additional variables by the use of PLS 

regression coefficients instead of the linear regression 

coefficients in Prefmap technique.   

Basically PLS is a regression method in the sense that it 

deals the relationship between response variable and 

explanatory variables. But it is comparatively different 

method that it can be used when explanatory variables have 

collinearity, and when the number of observation is smaller 

than the number of explanatory variables. That is, univariate 

PLS, which deals one response variable has much similarity 

with traditional regression. 

To avoid collinearity in PLS, it uses a kind of principal 

component analysis, which tries to reduce many mutually 

interrelated variables into small number of irrelevant 

variables. From that point of view, PLS can be compared to 

Principal Component Regression (PCR). The idea of PCR is 

similar to PLS. Both PCR and PLS consider collinearity or 

interrelationship among the explanatory variables. Whereas 

PCR considers only collinearity or interrelationship among 

the explanatory variables, PLS considers both response 

variables and explanatory variables when it determines the 

principle component. That is, PCR considers solely 

explanatory variables when it determines principle component, 

whereas, in PLS the information of response variables is 

considered when it determines principle component. 

PLS is very similar to canonical correlation analysis(CCA) 

from the point of view that they deal the relationship of sets 

of variables and use a kind of principle component analysis 

(PCA). 

Huh and his colleagues proposed several positioning map 

methods using traditional multivariate data analysis techniques 

(Kim 2000; Yang 1998; Park and Huh 1996a, b; Han 1995). 

They called it as 'quantification method'. The quantification 

methods proposed by them are endeavors to reduce the 

multivariate data with interrelationship and to represent or 

to plot them onto the lower dimensional space. Projection 

pursuit stands for those methods. It aims to analyze the 

characteristics and structure of data through projecting the 

multivariate data onto the lower dimensional space and 

through analyzing the projection. In that sense, quantification 

method means a technique for building map in marketing. 

Based on the above ideas, the purposes of this research is to 

propose an algorithm for building positioning map by 

partial least squares regression. 

II. Basic Ideas of the Study

1. Singular Value Decomposition 

As told, the basis of the study is singular value decomposition 

(SVD). Let's consider the × data matrix   with rank 

( ) (Huh 1995).  can be written as 

  ,  (2.1)

where     and     are the 

column orthogonal matrics of size × and × 
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respectively   
    , and  is × diagonal 

matrix with singular value  ≥ ≥    as its 

diagonal elements. The left singular vectors     

form an orthogonal basis for the columns of  in  

and the right singular vectors     form an 

orthogonal basis for the rows of  in  .

SVD has very close relationship with eigen system. Let's 

consider the data matrix   ×  where  is × 

matrix.   can be written as 

     .   (2.2)

We can find that the right singular vectors are eigen 

vectors of   and the squared singular values are eigen 

values,  . So we can get eigen values and eigen 

vectors of   through SVD of . 

2. Partial Least Squares Regression 

Partial least squares regression(PLSR) is very useful for 

building a predictive model when variables are many and 

highly correlated. Multiple regression analysis also useful 

tool for building a prediction model. But it has much 

limitation when variables are many and highly correlated. 

In such cases, even though we can build a prediction model, 

it will fail to predict new data well (Tobias 2007). Especially 

when the number of variables is much larger than the 

number of observations, the phenomenon of so-called 

'overfitting' occurs. 

When the explanatory variables are highly correlated, one 

approach to overcome the problem is to remove the some of 

highly correlated explanatory variables. Another approach 

is to reduce the explanatory variables into small number of 

variables which have no correlations.

The concept of PLS is to extract small numbers of latent 

variables which explain for highly correlated many variables. 

In that sense, PLS is a indirect modelling. But the way of 

extracting latent variables is different from the traditional 

method, It will be explained later. 

<FIGURE 2.1> Indirect Modelling

        Source: Tobias, Randall D (2007). 

PLS extracts the latent variables to maximize the relationship 

between the successive pairs of latent variables. So, it has 

interest in SVD of  . Originally PLS method means PLS 

regression. Usually we can get better predicted value through 

PLS regression than any other analysis. In PLS  is a 

matrix of response variables and , a matrix of explanatory 

variables. It menas that  depends on . 

PLS proposed by Herman Wold in 1966, was improved 

by Naes and Martens (1985). Let's consider their original 

concept. Like PCR, PLS regression (PLSR) is a dependency 

model.  For convenience, I will suggest such a case  that  

is a set of variables(or a matrix) and  is a single variable 

(or a vector). The -variables and -variables are scaled 

and centered, yielding  and . Then step 1 to 5 are 

performed for each component  max  where max  
is the maximum number of PLSR component to be 

computed. 

Step 1. Find weight vector  by maximizing the 
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covariance between the linear combination 

 and   under the constraint that 
= 1.

Step 2. Find factor scores,  as the projection of  

on  ,  i.e.      

Step 3. Regress  on  to find the loading 

,  i.e. 

  
 


  

Step 4. Regress  on  to find the loading   , i.e. 

 
 

  

Step 5. Subtract  

  from  and call the new 

matrix . 

        Subtract    from   and call the new matrix .

After repeating the above steps until the maximum 

number of component, max .

The superiority of PLSR to PCR is very well known. 

Ryan et.al(1999) showed empirically that PLSR is better 

than PCR in prediction the response variable. They compared 

three models with mediators and collinearity among the 

response variables, for example, regression, PCR, and 

PLSR. As the hypothesized conceptual model had moderators 

and collinearity in their study, the regression model was not 

germane to the research objective. Hence their focus was on 

the comparison of PCR, with PLSR. Even though the fact 

that there was a difference in estimating the coefficients 

between PCR and PLSR was very confusing, But prediction 

of PLSR was better than PCR. 

III. Suggesting Algorithm and 

    Numerical Example

1. Basic Concept

As discussed earlier, the purpose of PLS regression is a 

prediction of response variable(s). Let's consider data 

matrix  with  explanatory variables,  response variables 

and  observations.  Data matrix  consists of  ×  

and  × . Here, I assume that data matrix  and  are 

scaled and centered, but no such transformation mandatory 

(Huh et al 2007; Yi 2007). 

The aim of PLS regression is to find linear combination of 

-explanatory variables () and -response variables () 

which maximizes the covariance between the projections of 

each sets of variables. The problem of maximization can be 

written as 

maximize (w.r.t.   and  )  Cov(  ,  ) (3.1)

subject to   =     , 

where  and  are projections of each data matrix  

and data matrix  (Huh, Lee, and Yi, 2007).

As the covariance of (3.1) is dependent on both direction 

and norm of   and  , two constraints     and 

     are considered. Lagrangian function can be used to 

get the solution of (3.1) under the constraints. The function 

  is defined as  

     =    


 

 (3.2)

subject to    and     . 

By setting the partial differential of   to   and  , (3.3) 

and (3.4) are obtained.

       =  ,    (3.3)  

       =  (3.4)  

By solving the simultaneous equations of (3.3) and (3.4), 

with respect to  ,   is eliminated, Consequently, we have

           .    (3.5)  
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Here, the solution of   is an eigen vector of ×  

non-negative matrix       . In the same manner, the 

solution of   is an eigen vector of ×   non-negative 

matrix       . Therefore, both   and   can be 

obtained from SVD (singular value decomposition) of 

×   matrix   . That is, by the use of (3.5),        

=   
   

  is obtained. Since     , 
 

    is equal to  

  . So, by decomposing 

      , eigen value   and each eigen vector of 

matrix        is obtained. 

Similarly, matrix        is decomposed into 

 

   , and eigen value   and each corresponding 

eigen vector of matrix        is obtained. Thus, we can 

find that weight vector   of matrix  is   and weight 

vector   of matrix is   from 

      =  
 , = ⋯  , = ⋯  ,

              ≥ ≥ ⋯ ,     (3.6)

where        and  is a matrix with singular 

values ≥ ≥ ⋯ on the diagonal, the columns 

 ⋯  of   are left singular vectors, and the columns 

 ⋯  of   are right eigen vectors. Usually eigenvalues 

  is referred to  .

Consider the case that  is a vector (=). In PLS method, 

  is obtained as    /∥  ∥, when we consider the 

constraint (    ) in (3.1). Accordingly SVD for   is 

not needed. 

2. Positioning Algorithm for 

   PLS regression

Let's consider data matrix  with  explanatory variables,  

 response variables and  observations.    will be  

transcribed as  ( ×  ) and call it as score vector. By 

regressing   on  ,   fit,   can be obtained as

  =       =  
 ,  

where 
  =     .     (3.7) 

 ( × ), regression coefficients of  ,  can be called 

-loading vector. As shown in (3.7), PLS regression is a 

simple linear regression method in which  is regressed on 

an explanatory variable  .  

When we determine coefficient vector  (in  =  ), we 

should consider   as well as   simultaneously. Determining 

the regression coefficient 
  is very complicated, since   

=   ,  where   =     or      . Accordingly, 

distribution of   can not be obtained easily in PLS 

regression, contrary to linear regression.

Above procedure is the first step in PLS regression. We 

can identify that rank of transformational matrix   of  is 

1. To obtain the improved fit, the rank of   can be 

increased by the use of technique which will be shown in 

the quantification step. For convenience, I will suggest one 

more step in this algorithm. I will use the following 

notations for convenience. 

Notations 

  

 ∙  : data matrix with several sub data matrix

 ∙ , : sub data matrix

 ∙   : weight vectors obtained from SVD

 ∙  : score vectors of sub data matrix , 

 ∙  : loading vector for sub data matrix 

 ∙  : loading vector for sub data matrix 

 ∙   : predicted value of sub matrix  

 ∙   : predicted value of sub matrix  

 ∙ number in subscript : PLS cycle 

For the further steps, I will denote  →  ,  →  , 
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 →  ,  →  and  →  .  Following steps can be 

put in order for quantification of PLS regression.

∙ Data are centered and scaled 

Cycle 1

Step 1 : Find weight vectors and score vectors  

Find  and   in the manner of maximizing (3.1) under 

the these constraints     ,     . Accordingly, we 

can obtain score vectors (= and   ) of data 

matrix  and . 

Step 2 : Find loading vectors 

Obtain  and .  can be obtained by regressing   

on   and  can be obtained by regressing   on  . 

Thus,   is  
 

 
   (=  

 ), where 
  =


  

  
    and   is  

  
 

   (= 
 ).  

where 
  = 

 
 

  .

If 
  

  
 is denoted to  , then   become 


 . Here 

 (× ) (= 
 ∥∥ ) is called 

-loading vector. Similarly,   ( ×  ) can be called 

-loading vector.

Step 3 : Deflate the data 

Deflate   and   with a following manner.

    =  ,   =   .

Cycle 2

Step 4 : Finding weight vectors and score vectors  

Find   and   in the manner of maximizing Cov(  ,

  ) under the constraints 
   = 1 and 

   = 1. 

Compute new score vector   and .  

Step 5 : Find loading vectors 

Obtain  and  .  can be obtained by regressing   

on   and  can be obtained by regressing   on  , 

where    ,  .

    =  
  

 
  = 

 , 

    =  
  

 
  = 

  

Consequently,    and   can be expressed as follows.

   =  +  

     =  
  

 
   + 

  
 

   

     =  
  +

 , 

    =  +  

      =  
  

 
   + 

  
 

   

      =  
  +

 , 

where   
  = 

  
 

   

and  
  = 

  
 

  .

By the use of above procedure, the prediction value of 

subject  ( ×  ) that has   ( × ) is possible. The 

procedure extends iteratively in a natural way to give   (

=1,2,3,…) number of components of   and  . To 

determine the number of components which will be 

included in regression model, cross validation technique is 

usually used.

The focus of this paper lies in the suggesting positioning 

method using PLS regression. Consider multivariate data 

matrix  which consists of data matrix  with - 

explanatory variables and data matrix  with -response 

variables again. I assume that data matrix  and data matrix 

 are scaled and centered. According to PLS regression, 

score vectors of ,   (=×) are orthogonal and they 

can generate the base of projection space. 

For positioning of multivariate data matrix () by PLS 

in the reduced space, determination of the coordinates is 

needed. In step 2 and step 5 of the algorithm, as previously 

showed, we obtained -loading vectors and -loading 
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Dimension 1 Dimension 2

 variables  
 
 

 


 variables 
 
 

 


 Note : 
  ∥∥, 

=∥∥

<TABLE 3.1> Quantification formulas of PLS regression for columns (variables)

Dimension 1 Dimension 2

Observations 
in data matrix 

          

Observations 
in data matrix 

     

<TABLE 3.2> Quantification formulas of PLS regression for rows (observations)

vectors.  Each loading vectors for  ×variables and 

×  variables can be used as coordinates. Thus, 

columns (  ) of data matrix   can be pointed on 

the linear space   
 
 

 
 ⋯  generated by  ⋅

⋅⋅. And columns ( ) of data matrix   can be 

pointed on the linear space   
 
 


 ⋯  generated 

by  ⋅⋅⋅. Here 
 is 

  ∥∥ and 
 is 


  ∥∥. The coordinates of each columns for 

dimension 1 and for dimension 2 are suggested  in Table 

3.1 and Table 3.2

3. Numerical Example

Data description

The data shown as an example here are the survey results of 

the automobile market in China. I am interested in how the 

property of automobile has an effect on the consumer's 

attitude toward brand. Thus I considered the data for 

property evaluation of the automobile and the data for 

attitude toward brand which are collected from the survey 

done in 2006. 

Thus, I consider the data matrix  with thirty six 

variables and fifty observations (companies). Data matrix  

consists of two sets of variables denoted by   ×  

and   × . Here,  is a data set for consumers' 

evaluation of automobile's property for companies. And  

is a data set for consumers' attitude toward brand. Here, data 

set  and are  collected in a seven point scale (from point 

1 to point 7) and they are scaled and centered for the 

analysis.  The brands and properties evaluated are listed in 

Table 3.1 and Table 3.2. Attitude toward brand used as a 

data set  are ‘overall satisfaction ()’ and ‘repurchase 

intention (=)’. 

Interpretation of the result

Loading vectors of ,  variables are listed in Table 3.5 

and in Table 3.6, and score vectors are listed in Table 3.7. 

Quantification plots are showed in Figure 3.1 based on the 

Table 3.5 and Table 3.6. 

Two components were extracted for convenience in this 

analysis. The total amount of the variance which was 

explained by two components was 56.3%. The first component 

explained the variance by 37.2% and the second component 

did 19.0%.

The -variables are divided into two groups on the 
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1. Beijing Hyundai 2. Beijing Jeep 3. Changan Ford 4. Changan Suzuki 
5. Dongfeng Citroen 6. Dongfeng honda 7. Dongfeng Nissan  8.DYK 
9. Southeast Motor 10.Faw Hainan Mazda 11. Faw Mazda 12.Faw-VW 
13. Guangzhou Honda 14. Guangzhou Toyota 15. Geely 16. Nanjing Fiat 
17. Chery 18.Shanghai GM 19. SVE 20. Tianjin Faw 21. Faw Toyota 
22. Korean Hyundai 23. Korean Kia 24. Hafei Motor 25. Changhe Suzuki 
26. Changan Motor 27. Biyadi 28. Jiangnan Auto 29. Faw Huali 30. Jilin 
Tongtian 31. Dongfeng Liuzhou 32. Nanjing Motor 33. Dongfeng Peugeot 
34. SGM Wuling 35. Shanghai Maple 36. Beijing Benz 37. Huachen BMW 
38. Huachen Motor 39. Faw Motor 40. Changcheng Auto 41. Changfeng Auto 
42. Jiangling Auto 43. Zhengzhou Nissan  44. Jiao Auto 45. Huatai Hyundai 46. 
Beijing Futon 47. Beijing Auto 48. Jianghuai Auto 
49. Baolong Auto 50. Mercedes-Benz

<TABLE 3.3> Automobile brands surveyed in China

1. proper engine displacement/ power 
2. engine type (v6,diesel engine, etc.)
3. good acceleration 4. good performance in cross country running.
5. stability at steering 6. convenience for parking 
7. durability of the whole 8. type of drive (two-wheel/four-wheel drive) 
9. gear type (manual/auto) 10. overall exterior styling 
11. overall interior 12. broad vision 13. car size 
14. convenience to get in and out 
15. convenience to load and unload cargoes 16. space of the front seats 
17. space of the second row 18. overall quietness 
19. standard features 20. price 21. scope of quality guarantee 
22. future trading price 23. efficiency of fuel 
24. efficiency of maintenance 25. manufacturer impression 
26. place of origin 27. availability of parts 28. cargo capacity 
29. guard against theft 30. overall safety 31. environmental protection 
32. sales service 33. after-sales service  34. lead time

<TABLE 3.4> Property list of automobile brands

direction. The variables of the first group gather around 

variable 30 (overall safety). The first group consist of 

variable 30 (overall safety), variable 25 (manufacturer's 

impression), variable 13 (car size), variable 10 (overall 

exterior styling) and so forth.  The variables of the second 

group gather around variable 22 (future trading price). The 

second group consist of variable 22 (future trading price), 

variable 20 (price), variable 15 (convenience to load and 

unload cargoes), variable 29 (guard against theft) and so 

forth. We can interpret that the first group is on 'the basic 

performance or the function of the automobile' and the 

second one is on 'the additional value of the automobile'.

The observations (brands) are dense around the second 

axis and scattered along the first axis. We can interpret that 

there is no substantial difference in the second axis and 

some difference in the first axis among the observations 

(brands). That is, the difference among the brands occur 

only in the first axis. 

By the use of the loading vectors and score vectors,  

variables and observations are plotted onto the space 

generated by each score vectors. They are Figure 3.1 and 

Figure 3.2.  As shown in Figure 3.1, variable 7 in - 

variables ('durability of the whole') has same direction with 

variables 1 ('overall satisfaction') of -variables. It means 

that 'durability of the whole' has a relationship with 'overall 

satisfaction'. Similarly variable 18 ('overall quietness') and 

variable 10 ('overall exterior styling') of  variables are 

very close to variable 2 ('repurchase intention') of   variables. 
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variables
Loading vectors of  variables

        dimension 1       dimension 2 

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23
X24
X25
X26
X27
X28
X29
X30
X31
X32
X33
X34

          -4.582               -0.726    
          -4.013                1.195    
          -5.303               -0.001    
          -3.256               -2.100    
          -5.859               -1.520    
          -1.046               -3.036    
          -3.703                3.934    
          -4.628               -2.451    
          -0.177                0.614    
          -3.890                1.458    
          -4.666               -0.967    
          -3.804                1.291    
          -4.183               -0.545    
          -3.747               -3.169    
          -2.611               -4.947    
          -5.642               -1.613    
          -1.802                1.425    
          -5.230                1.758    
          -3.796               -1.001    
           0.436               -3.327    
          -3.799               -2.655    
          -1.648               -5.133    
          -1.693               -3.586    
          -3.694                0.636    
          -5.302               -0.830    
          -4.799               -2.719    
          -2.566               -4.022    
          -4.223               -2.094    
          -4.316               -1.756    
          -5.704                1.072    
          -2.245               -3.852    
          -5.429               -2.204    
          -3.836               -2.860    
          -4.817               -3.710    

<TABLE 3.5> Loading vectors of  variables

We can interpret the plots in Figure 3.1 and Figure 3.2  

jointly. To the direction of  'overall satisfaction', observation 

49 ('Baolong auto') and observation 36 ('Beijing Benz') 

locate. Observation 37 ('Huachen BMW') and  43 ('Zhengzhou 

Nissan) have very close relationship ('repurchase intention'). 

That is to say, we can infer that those brands are well 

evaluated in the  'attitude toward brand'. 

We can combine the plots of  -variables with and  - 

observations. Brand 46 (Beijing Futon), brand 47 (Beijing 

Auto) and brand 30 (Jilin Tongtian) have  the direction with 

the second  group of the  -variables. It can be interpreted 

that Brand 46 is evaluated most positively in the second

variables
Loading vectors of  variables

      dimension 1       dimension 2        

Y1
Y2

         -4.018            3.843      
         -4.061            1.926      

<TABLE 3.6> The loading vectors of  variables

brands
Score vectors of  Score vectors  of 

  score 1    score 2   score 1   score 2

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

   0.2573     0.6153 
  -1.5322    -0.2144
  -0.2506     0.4663 
   3.6472    -0.6619 
   0.1907     0.1543 
  -2.1338    -0.0873
  -3.2126    -0.0604
   2.8621    -0.2684 
  -1.1962     0.1422 
   1.6745     0.8386 
  -0.5950    -0.0872
  -0.8816     0.4228 
  -1.5963     0.5584 
  -2.4841     5.2791 
   1.6042    -0.8362 
   1.4725    -0.3022 
   1.9291    -0.9091 
  -0.9682     0.7146 
  -1.1885     0.1760 
   1.6584    -1.1367 
  -1.8311     0.2621 
   2.1013     2.4058 
  -1.3366     2.8859 
   4.0785     0.8092 
   1.8296    -0.8445 
   4.8526    -1.3732 
   2.1274    -0.5577 
   9.3323     0.5278 
  -1.3013     1.9018 
  -1.0190    -7.4022
   0.8145    -0.3278 
   0.4360    -0.6694 
  -0.8699     0.5462 
   8.5661     0.3622 
   1.4476    -0.8746 
  -2.0491     2.6768 
  -3.9161     1.2294 
  -0.9434     0.9541 
  -1.8564     2.2781 
   0.2288    -0.3174 
  -2.2228     0.7235 
  -1.3820     0.4531 
  -2.5655     1.4262 
   3.4582    -0.3356 
  -0.4757    -1.8626
  -8.1641    -4.3247
  -4.6658    -2.0445
  -0.9320    -0.9416
  -2.7140     3.4292 
  -0.2852    -5.7993

  -0.1716    0.1950
  -0.7644    0.4854
  -1.1950    1.0885
   0.8696    0.1628
  -0.0462    0.2253
  -0.1893   -0.5392
  -0.7998   -0.1804
   0.1691    0.7810
   0.5466   -0.8871
   0.2413    0.1749
  -0.6022    0.2459
  -0.9075    0.4908
  -0.7998    0.2379
  -2.9721    2.0106
   1.6055   -0.9565
   0.4567   -0.0131
   0.8696   -0.2819
  -0.6921    0.3326
  -0.6921    0.2756
   0.2591    0.2862
  -0.6022   -0.0740
  -1.1051    1.5139
   0.1691   -0.3057
   1.4624   -0.4791
   0.3490    0.1472
   1.4978   -0.0479
   0.9050    0.0003
   2.2514    0.6364
  -0.8366    0.8439
   1.1408   -2.3552
  -0.0639    0.2714
   0.1337   -0.0778
  -0.2615    0.0866
   2.9710   -1.0283
   1.7131   -1.0649
  -1.2658    0.1614
  -1.2127    0.0244
  -0.7821    0.5223
  -2.0209    1.4468
   0.4744   -0.2196
  -0.5668    0.0555
   1.0672   -1.3900
  -0.2615   -0.3522
   1.4978   -0.4088
   1.1203   -0.8091
  -0.2084   -1.4549
  -1.2850    0.1292
   0.6543   -0.8866
  -2.8113    2.2295
   0.6911   -1.2488

<TABL 3.7>The score vectors of  and 
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<FIGURE 3.2> Plots of observations by PLS regression

<FIGURE 3.1> Plots of variables by PLS regression

 group of variables. But as the variables of the second group 

has no relationship with the 'attitude toward brand', it seems 

that the good evaluation of those brands will not be 

associated with the direct selling. On the other hand, brand 
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37 (Huachen BMW) has a same direction with the first 

group of variables. Thus it seems that brand can get good 

performance in the market.

On the contrary, brand 34 (SGM Wuling) and brand 28 

(Jiangnan Auto) have a opposite direction to the other 

variables. It seems that they are badly evaluated in the 

properties of  -variables. Brand 44 (Jiao Auto) and brand 

26 (Changan Motor) have similar position with brand 34 

and brand 28.  

To get the visual image I suggested in this paper, I used 

'R' language. 

Ⅳ. Summary and Discussions

The purpose of this research is to propose the positioning 

algorithm for PLS regression. In this study I proposed how 

to position the variables and the observations onto the 

simple space by PLS regression. The basis of the algorithm 

is in the singular value decomposition. But the problem 

exists in the way of deriving the singular value composition. 

To derive the form of singular value decomposition, 

Lagrange multiplier method function was adopted. After 

components are extracted via singular value decomposition, 

the relationships between components and variables can be 

derived by regressing variables on the components. The 

regression coefficients are the coordinates of the variables. 

Additionally we can get score vectors of components for 

observations. They are the coordinates of the observations. 

Based on the coordinates, the variables and observations 

can be positioned on the simple space generated by PLS 

regression.

The quantification technique for PLS method gives us the 

better understanding of structure of variables and observations. 

Especially when there are so many sets of variables, 

quantification technique proposed here is very useful. As 

we mentioned above, the key idea of this algorithm lies in 

the way of building the singular value composition format. 

When there are two sets of data, using Lagrange multiplier 

method function may be a good way of building the singular 

value composition format. But, given the over 3 sets of data, 

it is very to difficult to solve the Lagrange multiplier method 

function due to the many constraints in the equation.

Let's consider 3 sets of variables (=×), (=×), 

and (×). Let denote , , and  be the 

projections of each data matrix ,, and . Unlike objective 

function suggested in the case of two sets of variables, we 

have to use the constraints      and    for 

obtaining solution. In this case, the method we used in the 

two data sets case has problem in solving the problem. Of 

course, alternatively, the constraint    can be 

used for the simple process. Strictly we can not be sure that 

it should be a correct way of solving problem. For that 

reason, it is very needful to find a way of solving the 

problem in the case of many data sets.   
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