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ABSTRACT

Partial Least Squares regression(PLSR) proposed by Herman Wold in 1966 has been used as very
valuable method to predict a set of response variables by a set of explanatory variables. PLSR is very
useful for building a predictive model when variables are many and highly correlated. Multiple
regression analysis also useful tool for building a prediction model. But it has much limitation when
variables are many and highly correlated. In such cases, even though we can build a prediction model, it
will fail to predict new data well (Tobias, 2007). Especially when the number of variables is much larger
than the number of observations, the phenomenon of so-called 'overfitting' occurs. When the explanatory
variables are highly correlated, one approach to overcome the problem is to remove the some of highly
correlated explanatory variables. Another approach is to reduce the explanatory variables into small
number of variables which have no correlations. The concept of PLS is to extract small numbers of latent
variables which explain for highly correlated many variables. In that sense, PLS is a indirect modelling.
But the way of extracting latent variables is different from the traditional method,

The superiority of PLSR to PCR(Principal Component Regression) is very well known. Ryan et. al
(1999) showed empirically that PLSR is better than PCR in prediction the response variable. They
compared three models with mediators and collinearity among the response variables, for example,
regression, PCR, and PLSR. As the hypothesized conceptual model had moderators and collinearity in
their study, the regression model was not germane to the research objective. Hence their focus was on the
comparison of PCR, with PLSR. Even though the fact that there was a difference in estimating the
coefficients between PCR and PLSR was very confusing, But prediction of PLSR was better than PCR.

Even though PLSR began in social sciences, it's uses are extended to the various fields like
chemometrics (Westerhuis 1998; Wagon & Kowalski 1988; Geladi & Kowalski 1986) or sensory
evaluation (Martens & Naes 1989), marketing (Abdi 2003; Chin et al. 2003; Graver, et al 2002; Ryan et
al 1999; Fornell and Bookstein 1982; Japal 1982) and design (Han and Yang 2004). Interestingly,
similarly to this research, Husson & Pages (2005) proposed the way of corresponding additional variables
by the use of PLSR coefficients instead of the linear regression coefficients in Prefmap technique.

Huh and colleagues proposed several quantification methods using traditional multivariate data
analysis techniques (Kim, 2000; Yang, 1998; Park and Huh 1996a, b; Han, 1995). The quantification
methods proposed by them are endeavors to reduce the multivariate data with interrelationship and to
represent or to plot them onto the low dimensional space. Projection pursuit stands for those methods. It
aims to analyze the characteristics and structure of data through projecting the multivariate data onto the
lower dimensional space and through analyzing the projection. In that sense, quantification method
means a technique for building map in marketing.

The purpose of this research is to propose the algorithm for building positioning map by PLSR. The
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basis of the algorithm is a singular value decomposition. To derive the form of singular value
decomposition, Lagrange multiplier method function was adopted. After components are extracted via
singular value decomposition, the relationships between components and variables can be gotten by
regressing variables on the components. The regression coefficients are the coordinates of the variables.
Additionally we can get score vectors of components for observations from the same process. They are
the coordinates of the observations. That is, The variables and observations can be positioned on the
simple space generated by PLSR.

The quantification technique for PLS method gives us the better understanding of structure of variables
and observations. The limitation of this study is the situation when there are more than 2 sets of data. In
that case it is very to difficult to solve the Lagrange multiplier method function due to the many
constraints in the equation. Thus we should consider another method of extracting the principal

components due to the many constraints in the equation.

Key words: PLS, Partial Least Squares, PLSR, PLS Regression, singular value decomposition,
PCR, Principal Component Regression
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| . Backgrounds and Purposes

Partial Least Squares (PLS) proposed by Herman Wold in
1966 has been used as very valuable method to predict a set
of response variables by a set of explanatory variables.
Even though PLS began in social sciences, it's uses are
expanded to various fields like chemometrics (Westerhuis
1998; Wagen & Kowalski 1987; Geladi & Kowalski 1986)
or sensory evaluation (Martens & Naes 1989), marketing
(Abdi 2003; Chin et al. 2003; Graber, et al 2002; Ryan et al
1999; Fornell and Bookstein 1982; Japal 1982) and design
(Han and Yang 2004). Interestingly, similarly to this
research, Husson & Pages (2005) proposed the way of
corresponding additional variables by the use of PLS
regression coefficients instead of the linear regression
coefficients in Prefmap technique.

Basically PLS is a regression method in the sense that it
deals the relationship between response variable and
explanatory variables. But it is comparatively different
method that it can be used when explanatory variables have
collinearity, and when the number of observation is smaller
than the number of explanatory variables. That is, univariate
PLS, which deals one response variable has much similarity
with traditional regression.

To avoid collinearity in PLS, it uses a kind of principal
component analysis, which tries to reduce many mutually
interrelated variables into small number of irrelevant
variables. From that point of view, PLS can be compared to
Principal Component Regression (PCR). The idea of PCR is
similar to PLS. Both PCR and PLS consider collinearity or
interrelationship among the explanatory variables. Whereas
PCR considers only collinearity or interrelationship among
the explanatory variables, PLS considers both response
variables and explanatory variables when it determines the

principle component. That is, PCR considers solely

4 opilE) 933 September 2011

explanatory variables when it determines principle component,
whereas, in PLS the information of response variables is
considered when it determines principle component.

PLS is very similar to canonical correlation analysis(CCA)
from the point of view that they deal the relationship of sets
of variables and use a kind of principle component analysis
(PCA).

Huh and his colleagues proposed several positioning map
methods using traditional multivariate data analysis techniques
(Kim 2000; Yang 1998; Park and Huh 19964, b; Han 1995).
They called it as 'quantification method'. The quantification
methods proposed by them are endeavors to reduce the
multivariate data with interrelationship and to represent or
to plot them onto the lower dimensional space. Projection
pursuit stands for those methods. It aims to analyze the
characteristics and structure of data through projecting the
multivariate data onto the lower dimensional space and
through analyzing the projection. In that sense, quantification
method means a technique for building map in marketing.
Based on the above ideas, the purposes of this research is to
propose an algorithm for building positioning map by

partial least squares regression.

|I. Basic Ideas of the Study
1. Singular Value Decomposition

As told, the basis of the study is singular value decomposition
(SVD). Let's consider the n < p data matrix X with rank r
(r < p) (Huh 1995). X can be written as

X=UDV', 2.1

where U= (uj,uy,..u,) and V= /(v,,v,,..v,) are the

r

column orthogonal matrics of size nxr and pxr
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respectively(U'U=1,V'V=1), and D is rxr diagonal
matrix with singular value g, > p... > 1, (>0) as its
diagonal elements. The left singular vectors U= (u;,us,...u,.)
form an orthogonal basis for the columns of X in R”
and the right singular vectors V= (v,vy,..v,) form an
orthogonal basis for the rows of X in R”.

SVD has very close relationship with eigen system. Let's
consider the data matrix X’X (p<p) where X is nxp

matrix. XX can be written as

X'X=VD*V'. (2.2

We can find that the right singular vectors are eigen
vectors of X' X and the squared singular values are eigen
values, A, \,...\.. So we can get eigen values and eigen

vectors of X' X through SVD of X.

2. Partial Least Squares Regression

Partial least squares regression(PLSR) is very useful for
building a predictive model when variables are many and
highly correlated. Multiple regression analysis also useful
tool for building a prediction model. But it has much
limitation when variables are many and highly correlated.
In such cases, even though we can build a prediction model,
it will fail to predict new data well (Tobias 2007). Especially
when the number of variables is much larger than the
number of observations, the phenomenon of so-called
'overfitting' occurs.

When the explanatory variables are highly correlated, one
approach to overcome the problem is to remove the some of
highly correlated explanatory variables. Another approach
is to reduce the explanatory variables into small number of
variables which have no correlations.

The concept of PLS is to extract small numbers of latent

variables which explain for highly correlated many variables.
In that sense, PLS is a indirect modelling. But the way of
extracting latent variables is different from the traditional

method, It will be explained later.

(FIGURE 2.1) Indirect Modelling

Population

Explanatory Responge
Variables Variables

Sample
Response
Variables

Latent
Variables

Explanatory
Variables

Latent
Variables

Source: Tobias, Randall D (2007).

PLS extracts the latent variables to maximize the relationship
between the successive pairs of latent variables. So, it has
interest in SVD of X" Y. Originally PLS method means PLS
regression. Usually we can get better predicted value through
PLS regression than any other analysis. In PLS Y is a
matrix of response variables and X, a matrix of explanatory
variables. It menas that ¥ depends on X.

PLS proposed by Herman Wold in 1966, was improved
by Naes and Martens (1985). Let's consider their original
concept. Like PCR, PLS regression (PLSR) is a dependency
model. For convenience, I will suggest such a case that X
is a set of variables(or a matrix) and y is a single variable
(or a vector). The X-variables and y-variables are scaled
and centered, yielding X, and y,. Then step 1 to 5 are

performed for each component a =1,2,...,4,,. where A

) max max

is the maximum number of PLSR component to be
computed.

Step 1. Find weight vector u?a by maximizing the

PLSTIFE olgot EXIMYHe 2% 5
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covariance between the linear combination
X,_,w, and y under the constraint that w!w,= 1.
Step 2. Find factor scores, t;, as the projection of X, _,

on w, ie. t=X _ w,

Step 3. Regress X,_; on t, to find the loading p;t, ie.
o= Xl )14,

Step 4. Regress y,_, on t, to find the loading q; , 1.e.
@Yo 1tu) 1 1,

Step 5. Subtract t; pAnt from X,_, and call the new
matrix X, .

Subtract t; qAa from y,_, and call the new matrix y,.

After repeating the above steps until the maximum

number of component, A

max *

The superiority of PLSR to PCR is very well known.
Ryan et.al(1999) showed empirically that PLSR is better
than PCR in prediction the response variable. They compared
three models with mediators and collinearity among the
response variables, for example, regression, PCR, and
PLSR. As the hypothesized conceptual model had moderators
and collinearity in their study, the regression model was not
germane to the research objective. Hence their focus was on
the comparison of PCR, with PLSR. Even though the fact
that there was a difference in estimating the coefficients
between PCR and PLSR was very confusing, But prediction
of PLSR was better than PCR.

[1l. Suggesting Algorithm and
Numerical Example

1. Basic Concept

As discussed earlier, the purpose of PLS regression is a

6 obiEl %13 September 2011
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prediction of response variable(s). Let's consider data
matrix A with p explanatory variables, ¢ response variables
and n observations. Data matrix & consists of X (n X p)
and Y (n X q). Here, I assume that data matrix X and Y are
scaled and centered, but no such transformation mandatory
(Huh et al 2007; Yi 2007).

The aim of PLS regression is to find linear combination of
p-explanatory variables (.X) and g-response variables ( ¥)
which maximizes the covariance between the projections of
each sets of variables. The problem of maximization can be

written as

maximize (w.r.t. a and b) Cov(Xa,Yb) (3.1)

subjectto a’'a =b'b= 1,

where Xa and Yb are projections of each data matrix X
and data matrix ¥ (Huh, Lee, and Yi, 2007).

As the covariance of (3.1) is dependent on both direction
and norm of ¢ and b, two constraints a'a= 1 and
b'b= 1 are considered. Lagrangian function can be used to
get the solution of (3.1) under the constraints. The function

L is defined as
L(a,b, A 0) =a' X' Yo—A (d'a—1) =X, (0'b—1)
(3.2)

subjectto a’'a = land b'b= 1.

By setting the partial differential of Z to 0, and 0, , (3.3)
and (3.4) are obtained.

X'Yb—2X\a =0,, (33)
Y' Xa—2X\b =0, (3.4

By solving the simultaneous equations of (3.3) and (3.4),

with respect to a , b is eliminated, Consequently, we have

XYY Xa= 4) \a. (3.5

*** | Accessed 2019/06/27 11:07(KST)



Here, the solution of a is an eigen vector of pXp
non-negative matrix X' ¥ ¥* X . In the same manner, the
solution of b is an eigen vector of ¢xg¢ non-negative
matrix Y? X X' V. Therefore, both « and b can be
obtained from SVD (singular value decomposition) of
p>x ¢ matrix X' V. That is, by the use of (3.5), X' Y V' X
= UD, V' VD, U" is obtained. Since V'V=1, X'V
Y'X is equal to U D, U'. So, by decomposing
X' Y ¥' X, eigen value A=y’ and each eigen vector of
matrix X' ¥ ¥' X is obtained.

Similarly, matrix ¥' XX'Y is decomposed into
VD, V", and eigen value A = y* and each corresponding
eigen vector of matrix ¥* X X" V" is obtained. Thus, we can
find that weight vector a of matrix X is w, and weight

vector b of matrix Y'is v, from

Xt Y:UDM vt ,U:(U17U27"' ),V:(U17U27"' )s
PR (3.6)

where U'U= V'V=1 and D, is a matrix with singular
values fi; > po=> --- on the diagonal, the columns
Uy, Uy, -+ of U are left singular vectors, and the columns
vy, vy, -+ Of V7 are right eigen vectors. Usually eigenvalues
A; is referred to 2.

Consider the case that Y'is a vector (=y). In PLS method,
b is obtained as X'y /|l X'y I , when we consider the
constraint (b'b= 1) in (3.1). Accordingly SVD for Y is

not needed.

2. Positioning Algorithm for
PLS regression

Let's consider data matrix A with p explanatory variables,
q response variables and n observations. Xa will be

transcribed as s (n < 1) and call it as score vector. By

regressing ¥ on s, ¥ fit, ¥ can be obtained as

V=s(ss) s V=5 gty,
where ¢, =(s's)"'s' V. (3.7

gy (g < 1), regression coefficients of s , can be called ¥V
-loading vector. As shown in (3.7), PLS regression is a
simple linear regression method in which Y is regressed on
an explanatory variable s .

When we determine coefficient vector b (in s =X ), we
should consider ¥ as well as X simultaneously. Determining
the regression coefficient ¢’ is very complicated, since Y
=AY, where A= A(Y) or s(s's) 's". Accordingly,
distribution of ¥ can not be obtained easily in PLS
regression, contrary to linear regression.

Above procedure is the first step in PLS regression. We
can identify that rank of transformational matrix 4 of Yis
1. To obtain the improved fit, the rank of 4 can be
increased by the use of technique which will be shown in
the quantification step. For convenience, I will suggest one
more step in this algorithm. I will use the following

notations for convenience.

Notations

* K : data matrix with several sub data matrix
* X, Y: sub data matrix

* a,b : weight vectors obtained from SVD

* s,t : score vectors of sub data matrix X, ¥V
* g : loading vector for sub data matrix X

* g, : loading vector for sub data matrix ¥
«X: predicted value of sub matrix X

« Y predicted value of sub matrix ¥

* number in subscript : PLS cycle

For the further steps, I will denote s — s,, gy — 9.y,

PLSZIFE olgot EXIMYHe 2% 7
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X— X,, X X, and ¥ — Y, . Following steps can be

put in order for quantification of PLS regression.

* Data are centered and scaled

Cycle 1

Step 1 : Find weight vectors and score vectors

Find @, and b, in the manner of maximizing (3.1) under
the these constraints a'a= 1, b'b= 1. Accordingly, we
can obtain score vectors (X;a,=s, and Y;b, =t,) of data

matrix X and Y.

Step 2 : Find loading vectors

Obtain )?1 and }71 )?1 can be obtained by regressing X,
on s; and Y, can be obtained by regressing Y, on s .
Thus, )A/l is s, (shs,) 'st ¥, (= 5,90 ,), where ¢\, =
(50 s ¥, and Xy is s, (s)5) s X S5y dlp).
where ¢t ;- =(st5,) st X, .

If X s, (s\s,)""is denoted to g, ,, then X, become s,
g . Here ¢, y(px<1) (= X! s,/ 1l s, 1) is called X
-loading vector. Similarly, ¢, ,, (¢ 1 ) can be called ¥

-loading vector.

Step 3 : Deflate the data

Deflate X; and ¥; with a following manner.

Cycle 2

Step 4 : Finding weight vectors and score vectors
Find a, and b, in the manner of maximizing Cov(.X; a, ,
Y, b, ) under the constraints aba, = 1 and bhb, = 1.

Compute new score vector s, and i,.

Step 5 : Find loading vectors

Obtain )?2 and }72 . )?2 can be obtained by regressing X,

8 bl %13 September 2011
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on s, and )72 can be obtained by regressing ¥, on s, ,

where s, = X; a, , t, = Y;b,.

vo— t -1 _t _ t
Y, =s, (52 52) sy Yo =855y,
v — t -1t _ t
X, =3, (52 32) Sy Xy =55 o x

Consequently, ¥ and X can be expressed as follows.

Y=Y, +7,

t -1t t -1t
51 (31 51) s Y +52(32 52) s Y
_ toae it
5191y TS92v >
X =X, +X,
_ t -1t t -1t
=5 (31 51) 51X +52(3252) 85 X
_ ¢ ¢
= $191.x TS9.x>
where g5y = (s55,) 55 Yo

and gy = (shs,) " ) X, .

By the use of above procedure, the prediction value of
subject y (¢< 1) that has 2" (p<1) is possible. The
procedure extends iteratively in a natural way to give » (r
=1,2,3,--*) number of components of X and Y. To
determine the number of components which will be
included in regression model, cross validation technique is
usually used.

The focus of this paper lies in the suggesting positioning
method using PLS regression. Consider multivariate data
matrix KA which consists of data matrix X with p-
explanatory variables and data matrix Y with g-response
variables again. I assume that data matrix X and data matrix
Y are scaled and centered. According to PLS regression,
score vectors of X, s;, s, (=n < 1) are orthogonal and they
can generate the base of projection space.

For positioning of multivariate data matrix (X, ¥) by PLS
in the reduced space, determination of the coordinates is
needed. In step 2 and step 5 of the algorithm, as previously

showed, we obtained X-loading vectors and Y-loading

| Accessed 2019/06/27 11:07(KST)



(TABLE 3.1) Quantification formulas of PLS regression for columns (variables)

Dimension 1 Dimension 2
X variables als,
. t ok
Y variables YrS2

L% %
Note : s, :51/ sl s, :52/ sy |

(TABLE 3.2) Quantification formulas of PLS regression for rows (observations)

Dimension 1 Dimension 2
Observations _
, \ Xa =s X,a, =s
in data matrix X 1M =5 20y = Sy
Observations
. . Yo, =t Y,b, =t
in data matrix Y 11— h 20y =1y

vectors. Each loading vectors for X (=n X p) variables and
Y(nx¢q) variables can be used as coordinates. Thus,

columns z,(j = 1,2,...p) of data matrix X can be pointed on

t

Ls, ---) generated by s, s,, *

the linear space 7;: (a's), «
+ . And columns y, (k= 1,2,...q) of data matrix ¥ can be
pointed on the linear space @, : (y}.s), ¥}, --+) generated
by sp 8y * ¢ +. Here s is s, =s,/|ls,| and s, is
sy=55/ | s, |l . The coordinates of each columns for
dimension 1 and for dimension 2 are suggested in Table

3.1 and Table 3.2

3. Numerical Example

Data description
The data shown as an example here are the survey results of
the automobile market in China. I am interested in how the
property of automobile has an effect on the consumer's
attitude toward brand. Thus I considered the data for
property evaluation of the automobile and the data for
attitude toward brand which are collected from the survey
done in 2006.

Thus, 1 consider the data matrix A with thirty six

variables and fifty observations (companies). Data matrix A
consists of two sets of variables denoted by X (=50 34)
and Y (=50x2). Here, X is a data set for consumers'
evaluation of automobile's property for companies. And Y
is a data set for consumers' attitude toward brand. Here, data
set X and Y are collected in a seven point scale (from point
1 to point 7) and they are scaled and centered for the
analysis. The brands and properties evaluated are listed in
Table 3.1 and Table 3.2. Attitude toward brand used as a
data set Y are ‘overall satisfaction (= ¥1)’ and ‘repurchase

intention (= ¥2)’.

Interpretation of the result

Loading vectors of X, Y variables are listed in Table 3.5
and in Table 3.6, and score vectors are listed in Table 3.7.
Quantification plots are showed in Figure 3.1 based on the
Table 3.5 and Table 3.6.

Two components were extracted for convenience in this
analysis. The total amount of the variance which was
explained by two components was 56.3%. The first component
explained the variance by 37.2% and the second component
did 19.0%.

The X-variables are divided into two groups on the

PLSZIFE olgot EXIMYme 2% 9
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(TABLE 3.3) Automobile brands surveyed in China

1. Beijing Hyundai 2. Beijing Jeep 3. Changan Ford 4. Changan Suzuki
5. Dongfeng Citroen 6. Dongfeng honda 7. Dongfeng Nissan 8.DYK

9. Southeast Motor 10.Faw Hainan Mazda 11. Faw Mazda 12.Faw-VW
13. Guangzhou Honda 14. Guangzhou Toyota 15. Geely 16. Nanjing Fiat
17. Chery 18.Shanghai GM 19. SVE 20. Tianjin Faw 21. Faw Toyota

49. Baolong Auto 50. Mercedes-Benz

22. Korean Hyundai 23. Korean Kia 24. Hafei Motor 25. Changhe Suzuki

26. Changan Motor 27. Biyadi 28. Jiangnan Auto 29. Faw Huali 30. Jilin
Tongtian 31. Dongfeng Liuzhou 32. Nanjing Motor 33. Dongfeng Peugeot

34. SGM Wuling 35. Shanghai Maple 36. Beijing Benz 37. Huachen BMW

38. Huachen Motor 39. Faw Motor 40. Changcheng Auto 41. Changfeng Auto
42. Jiangling Auto 43. Zhengzhou Nissan 44. Jiao Auto 45. Huatai Hyundai 46.
Beijing Futon 47. Beijing Auto 48. Jianghuai Auto

(TABLE 3.4 Property list of automobile brands

14. convenience to get in and out

1. proper engine displacement/ power

2. engine type (v6,diesel engine, etc.)

3. good acceleration 4. good performance in cross country running.

5. stability at steering 6. convenience for parking

7. durability of the whole 8. type of drive (two-wheel/four-wheel drive)
9. gear type (manual/auto) 10. overall exterior styling

11. overall interior 12. broad vision 13. car size

15. convenience to load and unload cargoes 16. space of the front seats
17. space of the second row 18. overall quietness

19. standard features 20. price 21. scope of quality guarantee

22. future trading price 23. efficiency of fuel

24. efficiency of maintenance 25. manufacturer impression

26. place of origin 27. availability of parts 28. cargo capacity

29. guard against theft 30. overall safety 31. environmental protection
32. sales service 33. after-sales service 34. lead time

direction. The variables of the first group gather around
variable 30 (overall safety). The first group consist of
variable 30 (overall safety), variable 25 (manufacturer's
impression), variable 13 (car size), variable 10 (overall
exterior styling) and so forth. The variables of the second
group gather around variable 22 (future trading price). The
second group consist of variable 22 (future trading price),
variable 20 (price), variable 15 (convenience to load and
unload cargoes), variable 29 (guard against theft) and so
forth. We can interpret that the first group is on 'the basic
performance or the function of the automobile' and the
second one is on 'the additional value of the automobile'.
The observations (brands) are dense around the second

axis and scattered along the first axis. We can interpret that
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there is no substantial difference in the second axis and
some difference in the first axis among the observations
(brands). That is, the difference among the brands occur
only in the first axis.

By the use of the loading vectors and score vectors,
variables and observations are plotted onto the space
generated by each score vectors. They are Figure 3.1 and
Figure 3.2. As shown in Figure 3.1, variable 7 in X-
variables ('durability of the whole') has same direction with
variables 1 (‘overall satisfaction') of Y-variables. It means
that 'durability of the whole' has a relationship with 'overall
satisfaction'. Similarly variable 18 (‘overall quietness') and
variable 10 (‘overall exterior styling') of X variables are

very close to variable 2 ('repurchase intention') of ¥~ variables.
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(TABLE 3.5) Loading vectors of X variables

(TABLE 3.6) The loading vectors of Y variables

bl Loading vectors of X variables bl Loading vectors of Y variables
variapbles variables
dimension 1 dimension 2 dimension 1 dimension 2
X1 -4.582 -0.726 Y1 -4.018 3.843
X2 -4.013 1.195 Y2 -4.061 1.926
X3 -5.303 -0.001
X4 -3.256 -2.100
X5 -5.869 -1.620 (TABL 3.7)The score vectors of X and Y
X6 -1.046 -3.036
X7 -3.703 3.934 Score vectors of X Score vectors of Y
X8 -4.628 -2.451 brands
X9 ~0.177 0.614 score 1 score 2 score 1 score 2
X10 -3.890 1.458 1 0.2573 0.6153 -0.1716  0.1950
X11 -4.666 -0.967 2 -1.5322 -0.2144 -0.7644  0.48b4
X12 -3.804 1.291 3 -0.2506 0.4663 -1.1950 1.0885
X13 -4.183 -0.b45 4 3.6472 -0.6619 0.8696 0.1628
X14 -3.747 -3.169 5 0.1907 0.1543 -0.0462  0.2253
X15 -2611 -4.947 6 -2.1338 -0.0873 -0.1893 -0.5392
X16 -5.642 -1.613 7 -3.2126  -0.0604 -0.7998 -0.1804
X7 1802 1425 S | 7e62 0142 | oBass -0se
o e s 10 16745 08386 | 0.2413 0.1749
X21 _3'799 —2.655 12 -0.8816 0.4228 -0.9075  0.4908
X292 -1 -648 _5'133 13 -1.5963 0.5584 -0.7998  0.2379
%23 —1-693 —3.586 14 -2.4841 5.2791 -2.9721 2.0106
Yo —3-694 0.636 15 1.6042 -0.8362 1.6055 -0.9565
: : 16 1.4725  -0.3022 0.4567 -0.0131
X25 -6.302 -0.830 17 1.9291  -0.9091 0.8696 -0.2819
X26 -4.799 —2.719 18 -0.9682  0.7146 | -0.6921 0.3326
x27 ~2.566 -4.022 19 -1.1885  0.1760 | -0.6921 0.2756
X28 -4.223 -2.094 20 1.6584  -1.1367 0.2591  0.2862
X29 -4.316 -1.756 21 -1.8311 0.2621 -0.6022 -0.0740
X30 -5.704 1.072 22 2.1013 2.4058 -1.1051 1.5139
X31 -2.245 -3.852 23 -1.3366 2.8859 0.1691 -0.3057
X32 -5.429 -2.204 24 4.0785 0.8092 1.4624 -0.4791
X33 -3.836 -2.860 25 1.8296  -0.8445 0.3490 0.1472
X34 -4.817 -3.710 26 48526 -1.3732 1.4978 -0.0479
27 2.1274  -0.5577 0.9050 0.0003
28 9.3323 0.5278 2.2514  0.6364
. . . . 29 -1.3013 1.9018 -0.8366  0.8439
We can interpret the plots in Figure 3.1 and Figure 3.2 30 -10190 -7.4022 1.1408 -2.3552
.. . . . . . 31 0.8145 -0.3278 -0.0639 0.2714
jointly. To the direction of 'overall satisfaction', observation 32 04360 -0.6694 0.1337 -0.0778
, , . ST , 33 -0.8699 0.5462 -0.2615  0.0866
49 (‘Baolong auto') and observation 36 (‘Beijing Benz') 31 85661 0.3622 29710 -1.0283
. \ 1 35 1.4476  -0.8746 1.7131 -1.0649
locate. Observation 37 ('Huachen BMW') and 43 ("Zhengzhou % 2 0497 5 6768 10858 01614
Nissan) have very close relationship (‘repurchase intention'). gg :g 8411221 (1) Séi‘]‘ :g) %gz 8 g%gg
That is to say, we can infer that those brands are well ?18 —ggggg %g% -3%22 842141182
evaluated in the 'attitude toward brand'. 41 -2.2228 07235 | -0.5668 0.0555
42 -1.3820 0.4531 1.0672 -1.3900
We can combine the plots of X-variables with and X- 43 -2.5655 1.4262 -0.2615 -0.3522
. 44 3.4582 -0.3356 1.4978 -0.4088
observations. Brand 46 (Beijing Futon), brand 47 (Beijing 45 -0.4757 -1.8626 1.1203 -0.8091
Auto) and brand 30 (Jilin Tongtian) have the direction with 0 Sy yoadl | 192088 laned
. . 48 -0.9320 -0.9416 0.6543 -0.8866
the second group of the X-variables. It can be interpreted 49 27140 3 4292 2’8113 29295
50 -0.2852  -5.7993 0.6911 -1.2488

that Brand 46 is evaluated most positively in the second
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(FIGURE 3.1) Plots of variables by PLS regression
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(FIGURE 3.2) Plots of observations by PLS regression
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group of variables. But as the variables of the second group that the good evaluation of those brands will not be
has no relationship with the 'attitude toward brand', it seems associated with the direct selling. On the other hand, brand
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37 (Huachen BMW) has a same direction with the first
group of variables. Thus it seems that brand can get good
performance in the market.

On the contrary, brand 34 (SGM Wuling) and brand 28
(Jiangnan Auto) have a opposite direction to the other
variables. It seems that they are badly evaluated in the
properties of X-variables. Brand 44 (Jiao Auto) and brand
26 (Changan Motor) have similar position with brand 34
and brand 28.

To get the visual image I suggested in this paper, I used

'R' language.

IV. Summary and Discussions

The purpose of this research is to propose the positioning
algorithm for PLS regression. In this study I proposed how
to position the variables and the observations onto the
simple space by PLS regression. The basis of the algorithm
is in the singular value decomposition. But the problem
exists in the way of deriving the singular value composition.

To derive the form of singular value decomposition,
Lagrange multiplier method function was adopted. After
components are extracted via singular value decomposition,
the relationships between components and variables can be
derived by regressing variables on the components. The
regression coefficients are the coordinates of the variables.
Additionally we can get score vectors of components for
observations. They are the coordinates of the observations.
Based on the coordinates, the variables and observations
can be positioned on the simple space generated by PLS
regression.

The quantification technique for PLS method gives us the
better understanding of structure of variables and observations.

Especially when there are so many sets of variables,

HFCiSta | 1P:202.31.234.

quantification technique proposed here is very useful. As
we mentioned above, the key idea of this algorithm lies in
the way of building the singular value composition format.
When there are two sets of data, using Lagrange multiplier
method function may be a good way of building the singular
value composition format. But, given the over 3 sets of data,
it is very to difficult to solve the Lagrange multiplier method
function due to the many constraints in the equation.

Let's consider 3 sets of variables X(=n X p), ¥(=nXq),
and Z(=nxr). Let denote Xa, Yb, and Z be the
projections of each data matrix X, ¥, and Z. Unlike objective
function suggested in the case of two sets of variables, we
have to use the constraints a'a=1,b'b=1, and c'c=1 for
obtaining solution. In this case, the method we used in the
two data sets case has problem in solving the problem. Of
course, alternatively, the constraint a'a+b'b+ ¢'c =3 can be
used for the simple process. Strictly we can not be sure that
it should be a correct way of solving problem. For that
reason, it is very needful to find a way of solving the

problem in the case of many data sets.

(FZ=F0Y: 20094 10 262
(Y XL 20094 128 282H
(ARt 20114 68 138D
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