채용본부	채용부서	채용분야(직급)	연수제안서 (별첨 참조)	채용예정인원	직무내용	지 원 자 격	문의처
			Reserch Fields	강릉	·분원		
	천연물소재연구센터	천연물 유래 의약/기능성 식품 연구 및 개 발 (Post-Doc.)	1-1	1	- 효소 약제 및 활성화 연구를 포함한 생화학 분석을 수행하 이 약물 후보 스크리닝. - 화합물의 효능과 작용 메커니즘을 평가하기 위해 in-vitro 세포 기반 실험 분석. - 실험 데이터 분석 및 해석, 보고서 작성. - 내부 팀과 업립하여 외약/기능성 식품 개발 프로젝트에 참 여하고 새로운 기술 개발에 기여	강릉 근무 가능자 / 박사 학위 소지자 생화학, 약학, 화학생물학, 합성생물학 또는 바이 오/화학 관련 전공자	
강릉분원	천연물인포매틱스연구센터	천연물 기전 이해 수학 모델링 (Post-Doc.)	1-2	1	질병 진행 과정/치료제 내성 진화 과정/천연물 기전 등을 설 명하는 수학 모델 개발, 데이터 분석, 시뮬레이선	강릉 근무 가능자 / 박사 학위 소지자 응용수학/물리/화학공학	jhwon@kist.re.kr
	천연물인포매틱스연구센터	식품 및 천연물 기기분석법 연구 혹은 NMR 분광법 연구 (Post-Doc, 인턴)	1-3	2	- 식품 및 천연물 내 유용 화학성분의 기기분석 및 화학구조 규명연구 - 유기 혼합물 및 생체 대사체 구조분석을 위한 NMR 분광법 연구	강릉 근무 가능자 / 학사 학위 이상 소지자 직무관련 유관분야	
				전북	 ·분원		
	구조용복합소재연구센터	차세대 스마트 고분자 및 복합소재의 제 조/분석 (Post-Doc. 또는 인턴)	2-1	2	(1) 화학/고분자 합성 및 복합소재 제조/분석 (2) 스마트 고분자 및 복합소재 (3) 소제의 구조·물성 상관관계 규명 (4) 이종소재 계면제어 및 접착	박사 또는 학/석사(우대) 화학, 재료, 화공, 신소재, 고분자, 섬유, 기계 등 다양한 전공	
	구조용복합소재연구센터	고성능 복합제로 개발, 제조 및 분석, 평가 (Post-Doc. 또는 인턴)	2-2	2	1. 유무기 소재를 이용한 오염물질 정화 필터 제조 및 분석 2. 기능성 나노성유 제조 (전기방사, 용역방사, dip coating, core-shell 이중구조 선유, 조음속 가스 유동을 이용한 섬유 개 절 등) 3. 섬유강화 복합소재 제조 및 물성 평가 등 시점 분석 4. 복합소재 강화용 필러 제조 및 복합소재 설계, 물성 평가 5. 유한요소 시물레이션	박사 또는 학/석사(우대) 기계, 재료, 화학, 고분자공학 등	
	기능성복합소재연구센터	기능성 나노소자 및 반도체의 전자소자 응 용, 전자파자폐, 에너지 응용 (Post-Doc. 또는 인턴)	2-3	2	1. 전자파차폐용 필러 소재 및 반도제 응용 연구 2. 전자파차폐효율 측정 및 주파수 선택증 연구 3. 나노소제, 나노소자 연구	학사이상 물리, 전자공학, 신소재, 재료공학 등	
	탄소용합소재연구센터	고성능 나노복합재료 제조, 분석 및 평가 (Post-Doc. 또는 인턴)	2-4	2	1. CNT 기반 고성능 나노북합성유 성유 제조 2. 성유 기계에, 전기적 출성 측정 및 구조 평가 3. 나노소제의 물리적 거동 분석 및 응용 4. 고분자 유면물성 측정 및 분석	학사 이상 화학공학, 고분자공학, 신소재공학, 재료공학, 화 학 등	
	탄소용합소재연구센터	고분자-탄소소재 전환 및 분석 (Post-Doc. 또는 인턴)	2-5	2	1. 고분자 소재의 열분해 메커니즘 및 촉매 역할 이해 2. 고분자 반화 거동 및 메커니즘 이해 3. 최종 제조된 반소 소재의 난던 특성 확인 4. 표면 개질 및 복합제로/애너지소자 응용	학사 이상 화학, 화학공학, 고분자공학, 섬유공학, 재료공학	
전북분원	탄소용합소재연구센터	기능성 나노소재 합성 및 응용 (Post-Doc. 또는 인턴)	2-6	2		박사 또는 학/석사(우대) 제료공학, 신소제공학, 화학공학, 화학, 고분자공 학, 기계공학	sang9419@kist.re.kr
	탄소용함소재연구센터	세라믹 섬유강화 복합재 제조 (Post-Doc. 또는 인턴)	2-7	2	1. 성유강화 복합제 제조를 위한 섬유 표면 개질 및 계면 제어 연구 2. 열처리 온도와 압력에 따른 세라믹 복합제 소결 특성 분석 연구 3. 섬유강화 세라믹 복합제 내부의 세라믹 섬유 배향 연구 4. 세라믹 섬유강화 복합제의 전기적, 기계적, 열적 특성 분석	학사 이상 재료, 화학, 화공 등	
	핵신기업협력센터(전복)	나노복합소재 사업기회, 사업화, 장비분석 관리 (인턴)	2-8	1	1. 나노복합소재 기반 복합소재의 용용가능성 관련 기술등량 조사 및 분석지원 2. 나노소자 전기적 독상분석 경비 활용 관련 지원 3. 나노복합스제 제조 및 특성분석 관련 업무 지원 - 나노복합소재 기술주지의 관련 기업 관련 연구활동 지원 - 나노복합소재 관련 기술사업화 활동 지원 4. 지원족등업자, 라만족장, 유শ 측정장지 관련 분석접수 및 분석결과 도출 지원 5. 반소복합소재 관련 전에 관련 통계 및 로그북 등 작성 관 리 등 6. 나노복합소재 관련 대외학회 참가 및 연구활동 지원	학사 이상 이공계열 혹은 경상 또는 사회과학 계열	
	구조용복합소재연구센터	양자, 분자동역학 시뮬레이션을 활용한 복 합재로 울성 산출 (Post-Doc)	2-9	1	1. 분자동역학 시뮬레이션을 활용한 나노복합소재의 분자 거 동 및 열적, 기계적 특성 산출 2. 양자, 분자 단위의 멀티스케일 모델링을 통한 울성 평가 3. 밀도범함수 이론을 이용한 교내일 고분자 특성 평가 4. 성유강화 복합소재 제조, 분석 및 시뮬레이션 활용 울성 산 출	박사 기계, 재료, 항공	

				뇌과학	연구소		
	뇌과학연구소장실	신경회로 규명 연구 (인턴 / Post-doc)	3-1	3	복잡한 뇌기능과 질환을 이해하기 위해서, 중요한 신경회로를 규명하는 연구를 진행 점단 항광 영상 기술들과 컴퓨터 분석을 통해 신경회로의 구 조책/기능적 연필방을 분석하여 다양한 뇌질환 원인 규명 ·in vivo imagin의 행동실점을 중한 활성도 연구 - 실험동을 뇌의 유전자 주입, 뇌절면 염색, 영상 데이터 확보, 신경회로 분석 - 영상 데이터 분석관련 소프웨어, 알고리즘 개발 - 신경회로 및 네트워크 작동 원리 분석	- 학위: 인턴(학사, 석사) / Post-doc(박사) - 우대 전공분야: 1) 생물학/신경과학/악학 관련 (실험적으로 주요 신경회로 규명) 2) 컴퓨터 공학/전자 관련 (영상 데이터 분석관련 소프웨어, 알고리즘 개발) 3) 물리/수학 관련 (연정회로 및 네트워크 작동 원리 모델링과 이론화) 4) 그 외 (행동설명, 전기생리 등) 작무내용 유관분야, 세부 지원자격 참고	kimj@kist.re.kr
	뇌기능연구단	신경세포 신호전달 및 활성 기작 연구 (인턴 / Post-Doc.)	3-2	2	- 자폐, 치매, 한팅턴, 파킨슨, 인공뇌 성쥐모델의 뇌절편 신경 세포 및 배양세포 등의 실점 재료에서, 세포의 활성과 시냅스 기능이 신약 약물 후보 물질을 포함한 외부 자극에 따라 변화 하는 것을 분자생물학, 바이러스제조, 전기생리학, 정향이미 징, 생화학, 동물행동실험 등의 기법으로 설점	- 학위 : 인턴(학사, 석사(우대) / Post-Doc.(박사) 직무내용 유관분야	ckimya@kist.re.kr
	뇌기능연구단	소뇌신경과학, 생체이미징 (인턴 / Post-doc)	3-3	2	(I) In vivo 이광자 현미경을 활용한 신경세포 활성도 이미징 시스템 구축 (2) 운동 제이 수행 중 소뇌 신경회로의 in vivo 신경세포 활성 도 축정 (3) 베이지안 추론을 통한 측정 결과의 데이터 분석 및 해석	- 학위: 인턴(학사, 석사) / Post-doc(박사) - 학사 인턴의 경우 진학 예정자 우선 선발 전공 무관	taegon.kim@kist.re.kr
	뇌가능연구단	계산신경과학, 인공지능 (인턴 / Post-doc)	3-4	2	(1) 제산신경과학적 뇌회로 모델링 (2) 뇌회로 모델을 통한 언지/운동 기능 시뮬레이션 (3) 뇌회로 모델 기반 인공신경망 설계 및 적용 (4) 뇌회로 모델 기반 뇌질환 메커니즘 규명 및 제어전략 개발	- 학위: 인턴(학사, 석사) / Post-doc(박사) - 전공 무관, 학사 인턴의 경우 진학 예정자 우선 선발	taegon.kim@kist.re.kr
	뇌기능연구단	계산 인지 및 시스템 신경과학 (인턴 / Post-doc)	3-5	3	ML 및 DL 활용 뇌신호 및 행동 데이터 분석 . 뇌·영동 관계 모델링 . AL 모형 재본석을 통한 특징 주술 . CBRAIN 기반 사회인지 신경 메커니즘 발굴 . CBRAIN 기반 Drain - brain interaction 연구 . CBRAIN 기반 절병 모델 탐구	- 학위 : 인턴(학사, 석사) / Post-doc(박사) 직무내용 유권분야	jeechoi@kist.re.kr
뇌과학연구소	뇌용합기술연구단	체액 기반 바이오센서 개발 (의 세부내용 연수제안서 참고) (인턴 / Post-doc)	3-6	3	1) 혈액에서 극미량의 뇌단백질을 검출할 수 있는 센서 개발 2) MEF 혹은 LSPR 기반의 항광 다중 검출 센서 개발 3) 몽에 볼일 수 있는 폐지형 웨이러볼 센서 개발 4) 제내 삽입형 전자약 개발 5) 2자원 물질을 이용한 가스 센서 개발	- 학위 : 언턴(학사, 석사) / Post-doc(박사) - 우대 전공분야 : 전자공학, 의공학, 화학공학, 생 명공학, 기계공학, 제료공학 등	shleekist@kist.re.kr
	뇌용합기술연구단	신경과학 및 신경공학 (인턴 / Post-doc)	3-7	2	망막 신경세포 광유전학 신경 신호 분석 또는 MEMS 기술을 이용한 3차원 신경전국 제작	- 학위 : 인턴(학사, 석사) / Post-doc(박사) - 우대 전공 : 생명과학, 신경과학, 전자공학, 기계 공학, 재료공학, 의공학	maesoon.im@kist.re.kr
	뇌질환극복연구단	뇌질환의 분자 및 세포학적 기전 연구 (Post-Doc.)	3-8	1	- 퇴행성 뇌질환 환자의 뇌조직에서 발굴된 질환관련 유전제 를 외상성 뇌순상 동물모델에서 확인하고 연관된 기전을 규명 하기 위한 인력 재용 - 인공사용한 과제를 통해 신경세포와 비신경세포 사이의 작 용 기전 연구를 위해 computational neuroscience & modeling을 수명할 수 있는 인력 재용	- 학위: 박사 - 우대사항: 1) 전기생리 천공자 우선 채용 2) 전기생리학적(electrophysiology) 측정기술을 소지한자 3) Bioinformatics (single cell transcriptome analysis) 전공자 우대 직무내용 유관분야	hoonryu@kist.re.kr
	뇌질환극복연구단	뇌질환 치료 목적 산약개발 연공자능 개발, 구조기반 백신 개발 프로그램 개발 및 활 용 (인턴 / Post-doc)	3-9	2	(포덕) 단백질-리간도 상호작용의 이에는 단백질에 의해 매개되는 단백질-리간도 상호작용의 이에는 단백질에 의해 매개되는 수많은 생명면상을 구조적 및 화학적으로 이해당에 있어서 필 수적인 요소이다. 재용하고자 하는 연구원은 화학의 원리에 근거하여 단백질과 신약 후보의 상호착용의 정확인 및 결합역 을 구조 기반으로 예곡하는 인공자능을 함 기개발하고 2) 활동 하는 역할을 입당하다. 개발한 인공자능은 항광물질 설계, 뇌 철환 지료제 개발 등 연구스 내에서 진행되는 다수의 프로젝 트들의 초기단계에 직접 활용되어 동시에 진행되는 나수의 프로젝 트들의 초기단계에 직접 활용되어 동시에 진행되는 역원들의 방향성을 설정하고 성공률을 높이는 역할을 하게 될 것이다. (약사 인턴) 전통적인 백신은 안정성과 생산수 주민에서 항상될 여지가 크 다. 특히 항체와 결합하는 부위인 에피토도 위주로 작은 크기 의 단백질을 설계배달 수 있다면 기존 백산들의 단점을 뛰어 단는 백신으로의 가치가 있을 것이다. 이 연수 과정에서는 구 조 기반 안공자능을 활용하여 안정성이 높고 생산성이 좋은 백신 설계법을 만들고, 관련 문제에 응용해보고자 한다.	- 학위 : 인턴(학사) / Post-Doc. (박사) - 우대 전공 : 화학, 생화학, 약학	hahnbeom@kistre.kr

				차세대반	도체연구소		
	스핀융합연구단	양자자기장센서 및 차세대반도체 (인턴)	4-1	1	- 자기장센서용 나노구조체 제작 및 분석 - 앙자소제를 활용한 스핀/전자소자 응용 연구	- 학사 또는 석사 학위 소지자/취득 예정자 - 재료/전자/물리 관련 전공자 우대	cujang@kist.re.kr
차세대반도제연구소	양자정보연구단	영자 프로세서 (Quantum processor) (Post-Doc / 인턴)	4-2	2	1. 포닥 - 다이아몬드 NV센터의 전자스핀과 핵스핀을 활용하여, 복수의 큐비트 시스템을 구성하여, 양자정보면산을 수행하고, 실제로 필요로 하는 문제를 해결하는 연구 - 다이아몬드 NV 센터 내 스핀 큐비트와 NV센터에서 생성하는 단일광자 간의 양자양의 구현 및 이를 활용한 양자인터페이스 요소 기술 연구 (공정 포함) 2. 인턴 - 다이아몬드 NV 센터 내 스핀 큐비트와 NV센터에서 생성하는 단일광자 간의 양자양의 구현 시스템 구축	- 박사 학위 소지자 또는 취득 예정자(포덕) / 학 사 학위 또는 취득 예정자(인탑) - 전기전자 및 물리학 전공 - 양자정보, 교체물리 및 다이아몬드 이론/실험/ 계산 경험자 우대 - FPGA를 활용 경험자, Python 및 Labview 활용 가능자, Nano fabrication 경험자 우대	dykang@kistre.kr
	양자정보연구단	양자정보, 양자센싱, 양자측정 (Post-Doc / 인턴)	4-3	2	1.포닥 - 큐비트 확장성을 가진 소자를 이용한 양자 측정 기초 연구 - 큐비트 화장성을 가진 소자를 이용한 양자 측정 기초 연구 - 5류비트 소규모 점결함 양자 프로세세에서 양자오류정정 기술 개발 - 미신리성을 응용한 양자회로 최적화 기술 개발 2. 인턴 - 양자 즉정 기초 보조 업무 - 마신리성 이용한 소규모 점결함 양자 프로세서 게이트 최적 와 연구	전기/전자/물리 관련 박사 전공자 우대(포닥), 물 리/전기/전자/화화/컴퓨터공화 관련 화사 전공자 우대(인턴)	jh_lee@kist.re.kr
	광전소재연구단	양자점 기반 광발광, 수광 소자 개발 (턴)	4-4	1	- ZnO 양자점 제작 - QD-LEDs, X-ray detector용 필름 섬광 소재 제작	- 학/석사(우대)학위 소지자 및 취득예정자 - 양자점 기반 광발광, 수광 소자 개발 관련 연구	wkchoi@kist.re.kr
		(2)		AI 로봇	분연구소	경험자 우대	
AI 로봇연구소	인공지능연구단	AI 헬스케이 핵심기술개발 (Post-Doc)	5-1	1	1. 컴퓨터비전 기술을 활용한 사람 등작 영상 및 데이터 분석- 처리 기술 개발 2. 컴퓨터비전과 AI 웹스케이 기술 용합을 통한 차세대 질병 전단·모니터팅 및 디자털 헬스케이 시스템 개발 포닥 연구원 1인 - 컴퓨터비전 기술 기반 사용자의 행동·보행·동작 인식 기술 개발 - 컴퓨터비전과 AI 헬스케이 기술의 용합을 통해 다양한 질병 예측이 가능한 결병 전단 예국·모니터링 인공자 등 디지털 헬 스케이 일고리즘 개발 - Human Data W Multimodal Foundation 기반의 초연결·조 지능화 전주기 라이프케이 기술 개발	- 직무내용 관련 연구 경험자 - 박사 이상 학위 소자자(예정자 포함)로서, 컴퓨터공학, 친저정보, 기계공학, 신호 및 영상처리, 인공자능 일고리즘 개발 경험자 우대 기계, 전기전자, 신호처리, 컴퓨터공학, 영상처리	krmoon02@kist.re.kr
	인공지능연구단	AI 헬스케이 핵심기술개발 (포닥/인턴)	5-2	2	1. 유먼 데이터 수집사리·분석·활용 기술 개발 2. 유먼 데이터 기반의 디지털 웹스케이 기술 개발 (퇴행성뇌 절환, 근감소중, 우울증 등에 대한 진단 보조 인공지능 개발) 포닥 연구원 1인 - 웨어리볼 디바이스 또는 영상·활영 장비를 이용하여 휴먼 데이터를 수집하고 이를 처리 및 분석하여 사용자의 동작과 행동을 인식하는 기술 개발 - 연공자소과 인간의 동작 및 행동 데이터를 이용하여 개인 건강 상태와 관련된 예측 또는 평가를 제공하는 디지털 헬스 케이 기술 개발	포닥 연구원 1인 - 직무내용 관련 연구 경험자 - 박사 이상 학위 소지자(예정자 포함)로서, 휴먼 데이터 저리 및 분석을 위한 인공지능 알고리중 개발 경험자 우대 기계, 전기전자, 신호처리, 컴퓨터공학, 영상처리	kmoon02@kist.re.kr
	언공자능연구단	인공자능 전분야 (포타/인턴)	5-3	5	1)우선 채용 - 답리당 학습(자기주도, 최적화, 지속/연합, 생성 모델), 답리당 학습(자기주도, 최적화, 지속/연합, 생성 모델), 답리당 (영상/점로 데이터, 누릴렌더링), 컴퓨터비전(객체검출/인식/주책, 제식별, 패턴인식, 생제인식, 얼굴표정/신체용작/영상, 이상명증/성황 분석), 컴퓨터 그래픽스(사원/공간), 조명자, 성데이터, 도매인일반약), 로봇자(설립도달영상, 반리로봇), 때타버스(AR/VK,XR, 원격점압, 디지털트린, 업체영상, 유먼팩터), 헬스케이(영상/동작분석, 스포즈웨어, 웨어러블, EHR, 질병예측) 2)일반 채용 - 인공지능 원천 및 응용 기술 전분야 3)홈페이지 - 인공지능원건무단 https://calkist.re.kr - 시각지능 https://wigkstre.kr - 시각지능 https://wigkstre.kr - 내전되어 하 https://wigkstre.kr - 내전되어 하 https://www.xrhumanlab.net - 론합련실 https://mww.xrhumanlab.net		hslim@kist.re.kr
	인공지능연구단	컴퓨터비전 및 생성형 인공지능 (인턴/포닥)	5-4	2	- 컴퓨터 비전 및 생성형 인공지능 기술 개발 : 영상 기반 30 휴면 등작 및 모델 생성 기술 개발 : 문장 기반 영상/비디오/3D비디오/3D모델/장면그래프 생성 기술 개발 (Text- to-Image, Text-to-Video, Text-to-3D Model, Text-to-SceneGraph)	- 인공지능/컴퓨터/전자/기계 관련 학과 학위 소 지자 - 파이센, C/C++, Java 등 프로그래밍 연어 가능 자 - PyTorch, TensorFlow 등 딥러닝 라이브러리 활 용 경험자 우대 연공지능/컴퓨터/전자/기계	hslim@kist.re.kr

_	헬스케이로봇연구단 헬스케이로봇연구단	컴퓨터비전/혼합현실/인공자능 (포닥/인턴) 컴퓨터비전/로봇제어 (포닥/인턴)	5-11 5-12	2	연구 - 울제 물성 착용형 파지 전략 연구 - 수 안 (in-hand) 물체 조작 전략 연구 - 비교 상세 연구분야 및 직무 내용/범위는 지원자와 협의 후 최종 결정 1. 혼합현실 기반 수술 가이드 시스템 개발 - HMD 장치를 이용한 운원현실 기반 수술 망립장치 기술 - 혼합현실 기반 어울 전쟁 가이드 기술 - 혼합현실 기반 연명을 절을 가이드 기술 - 혼합현실 기반 유명 생경 가이드 기술 - 혼합현실 기반 유명 생경 가이드 기술 - 혼합현실 기반 유명 생경 가이드 기술 - 후합현실 기반 유명 생경 가이드 기술 - 보이는 전에 보이는 이를 하면 한국 기술	수 아님) - (Lab HP 참고) www.dhwanglab.com 기계, 전기전자, 제어계축, 메카트로닉스, 로봇 및 기타 관련 전공 - 국내/해외 대학 박사급 연구원(포닥) 1인 - 국내/해외 대학 박사급 연구원(포닥) 1인 - 국무내송 중에서 한가지 이상에 전문지식 및 경험이 있으신 분 - 프로그래밍 경험자 우대 (C/C++, Python, C# 등) 컴퓨터/기계/전자/의공학 등 관련 전공 포닥: 박사학위자 및 예정자, 로봇/컴퓨터비전 관련 연구개별 경험 우대 인반: 학사/석사학위자 및 예정자, 기계공학, 컴퓨터 공학, 의공학 및 관련 전공자 우대 기계공학, 컴퓨터공학, 의공학 및 기타 관련 전공	slim@kist.re.kr jhha@kist.re.kr
	헬스케이로봇연구단		5-11		연구 - 물제 물성 직용형 파지 전략 연구 - 순 안 (in-hand) 물체 조작 전략 연구 - 비고 상세 연구분야 및 직무 내용/범위는 지원자와 협의 후 최종 결정 1. 혼합현실 기반 수술 가이드 시스템 개발 - HMO 장치를 이용한 문한현실 기반 수술 망납장치 기술 - 온한현실 기반 연연을 절골 가이드 기술 - 온한현실 기반 연연을 절골 가이드 기술 - 온한현실 기반 유명 생경 가이드 기술 - 본한현실 기반 유명 생경 가이드 기술 - 본하는 기반 의료명상-환자 자동 정합 기술 개발 - Depth 센서(KGE) 가메리)를 이용한 인공지능 기반 환자 자동 연석 기술 - 작습 기반 20/30 정합 기술	- (Lab HP 참고) www.dhwanglab.com 기계, 전기전자, 제어계축, 메카트로닉스, 로봇 및 기타 관련 전공 - 국내/해외 대학 박사급 연구원(포닥) 1인 - 국내/해외 대학 학사 또는 석사급 연구원(인턴) 1인 - 직무내용 중에서 한가지 이상에 전문지식 및 경 템이 있으신 분 - 프로그레잉 경험자 우대 (C/C++, Python, C# 등)	
					연구 - 물제 물성 적용형 파지 전략 연구 - 순 안 (in-hand) 물체 조작 전략 연구 - 비고: 상세 연구분야 및 직무 내용/범위는 지원자와 혐의 후	- (Lab HP 참고) www.dhwanglab.com 기계, 전기전자, 제어계측, 메카트로닉스, 로봇 및	dongnyunexisties
	지능로봇연구단	촉각 지능 로봇핸드 (Post-doc/인턴)	5-10	2	- 다지형 로봇텐드 손가락/손바닥 매커니즘 기구 설계 및 제 어 - 힘줄구동(tendon-driven)형 로봇텐드 역추에이터 연구 -로봇텐트 내장 촉감 센서 및 역감 센서 연구 -촉/역감 기반 비하습 물체 파지 전략 연구 - 다중 정본 (multi-modal information) 기반 로봇센드 제어	- 학위: 학사/석사(인턴) 또는 박사(포스닥) (졸업 예정자 포함) - 전공: 기계, 전기전자, 메카트로닉스, 로봇, 컴퓨 터 공학 - 로봇 기구설계 및 모터 제어 유경현자 우대 (필	donghyun@kist.re.kr
	지능로봇연구단	가변강성 메커니즘 (Post-doc/인턴)	5-9	2	O 가변강성 기구 설계 - 마그네데 일경이 재명 메커니즘 설계 및 특성화 연구 - 전자석 기반 강성 제어 연구 O 내물격 메커니즘 설계 - 유민기구 기반 연속제 로봇 내광격 설계 - 로봇 내장 모터 기반 자세 제어 연구	- (우대) 로봇 기구 설계 및 해석 유경험자 - (우대) 다자유도 로봇 모터 제이 유경험자 - (우대) 연속체 로봇 관련 연구 유경험자 - (우대) 유연기구 설계 유경험자 - 참고: https://www.dhwanglab.com/ 기계, 전기전자, 제어제축, 메카트로닉스, 로봇 및 기타 관련 전공	donghyun@kistre.kr
· AI 로봇연구소	지능로봇연구단	뇌일지공학 (인턴, 포닥)	5-8	2	1. 정상 및 MCI 노년층 대상 청각인지 실점 자극 디자인 2. 뇌파 측정 실험 패리다임 디자인 및 뇌파 박데이터 취득 실 점 수행 3. 뇌파 데이터 분석 및 정각 기반 문장인지를 위한 딥러닝 기 반 디코더 모델 개발 4. 뇌파 빅데이터에 기반한 청각인지 평가 AI 모델 개발	- 졸업에정자 또는 타기관 근무경력 6개월 미만 연 연구자 - Matlab, Python 등 S/W 프로그램 가능 - 뇌파 대이터 유득 실험 또는 답러닝 모델 개발 유경험자 우대 뇌인지공짜, 의용생제공짜, 심리짜, 물리짜, 전기 전자 또는 관련 전공	https://sites.google.com/vi ew/hbum, yslim@kist.re.kr
	지능로봇연구단	로봇 작업계회 및 강화학습 (언턴, 포닥)	5-7	2	다수의 이종 로봇 작업계획 및 연동 기술 개발 - 강화학승 기반 이종 로봇 작업 계획 개발 및 구현 (예: Multi-Agent Reinforcement Learning) ROS 기반 원격 로봇 시스템 SW 개발 - 원격 로봇 활용 시나리오 구현 및 통합 시스템 개선 사용자 평가 및 개발 시스템 개선 - 실환점 적용을 위한 사용자 테스트 및 시스템 개선	졸업에정자 또는 타기관 근무경력 6개월 미만인 연구자 Python, C++ 등 S/W 프로그램 가능로봇 시스템 개발 또는 ROS 유경현자 우대 기계, 전기전자, 전산, 컴퓨터, 메카트로닉스, 로보 틱스 또는 관련 전공	https://sites.google.com/vi ew/hbum, yslim@kistre.kr
	지능로봇연구단	소설로봇 (인턴, 포닥)	5-6	2	1. 소설 로봇 행동 제스처 디자인 및 로봇 행동 구현 (ROS 기반) 2. 인간-인간 대화 행동 데이터를 분석하고 이를 기반으로 로 봇 경찰 행동 모델링 3. 검롯의 상호작용 유효성 검증을 위한 인간-로봇 상호작용 실험 설계 및 결과 분석	중업에정자 또는 타기관 근무경력 6개월 미만의 연구자 Python, C++ 등 S/W 프로그램 가능로봇시스템 개발 또는 ROS 유경령자 우대 기계, 전기전자, 전선, 컴퓨터, 메카트로닉스, 로보 틱스 또는 관련 전공	https://sites.google.com/vi ew/hbum, yslim@kist.re.kr
	언공지능연구단	인공지능 및 컴퓨터비전 핵심 기술 연구 (포닥/인턴)	5-5	2	적/segmentation/재식별 기술 개발 등) - 영상/비디오 내 객체 검출/추적 (Object detection/tracking) 연구 - 딥러닝 기반 잭 체 제식별 (re-identification) 연구 - 딥러닝 기반 human segmentation & parsing 연구 - 딥러닝 기반 비디오 데이터 분석 연구 - 멀티모말 백데이터 처리 및 분석 연무 - 포닥> 상기 연수 내용 중 한 가지 이상에 대하여 주도적인 연구 수행 - 언연구 협외를 통해 상기 연수 내용 중 한 가지 이상에 대하여 연구 참여	<포닥>박사 학위 소지자(예정자 포함)로서, 소프 트웨어 개발 유경험자 우대, 데이터 처리 분야 유 경험자 우대 신민의 학사/역사 학위 소지자(예정자 포함)로 서, 소프트웨어 개발 유경험자 우대, 데이터 처리 분야 유경험자 우대 <포막,인턴>전기전자/컴퓨터/인공지능/통계 전 공 우대 (기타전공 가능)	hschoi@kist.re.kr

바이오 메디컬융합연구본부										
	바이오닉스연구센터	바이오 전자소자 개발 (인턴)	7-1	1	-생제 모니터링을 위한 바이오 센서 (전자소자) 개발 -약물 전달소자 디자인 및 개발	학사 혹은 석사 학위 소지자 및 2023년 졸업 예 정자 재료, 전자, 의공학 등	joohee710610@kist.re.kr			
바이오 메디컬 용합연구본부	바이오닉스연구센터	의공학, 제활/운동기기, 생제신호 분석 및 실명 (인턴 또는 포닥)	7-2	2	- XR기반의 디지털 헬스케어 기술 개발을 위한 실험 및 분석 전명 - 운동가능 장에 평가를 위한 재활 기기 개발 또는 평가 프로 토콜 설계 - 다양한 센서(EMG, 가속도, F/T 센서 등) 기반의 데이터 수 집 환경 구축 및 실시간 모니터링 SW 개발 또는 적용 관련 실 점 및 본석 전행 - 자세한 사랑은 https://songjoolee.wissite.com/mysite/research 참고	이공학, 월리치료, 작업치료, 기계공학, 또는 전 자공학 등 재활 의학/과학/ 공학계열 관한 전호 소치자 -로봇 또는 인체 설형 경험자 또는 울리치료 또는 작업치료 만이 소치자 -석사 확위 이상 소치자 및 소지 예정자 우대 의공학, 울리치료, 또는 작업치료 등 제활 의학/ 과학/ 공학 관련 전공, 기계공학, 또는 전자공학	songjoolee@kistre.kr			
	생체재료연구센터	의공학, 생명공학, 재료 (인턴)	7-3	1	나노입자 합성 및 세포 및 바이오실형	생명공학, 재료, 화학 전공자 우대. 세포 및 동물 실험 경험자 우대 의공학, 화학, 재료, 생명	hyojinlee@kist.re.kr			
			2	<u>덕단소재기</u>	술연구본부	I				
	계산과학연구센터	인공지능(AI), 인과추론, 머신리닝, 복잡인 공지능(AI), 인과추론, 마신리닝, 복잡계, 박 데이터 (Post-doc. 및 인턴)	8-1	4	- 안공지능(A)) 및 언과주론의 수리적 알고리즘 개발 - 데이터 어날리틱스 및 빅데이터 해석 : 농업, 질병, 금융 분야 - 빅데이터의 전처리 및 후처리, 시뮬레이션, 시각화	-인턴: 학사 학위 소지자 -Post-doc: 박사학위 소지자(학위취득 5년 이내) 인공지능, (응용)수학, (이론)물리학, 정보이론, 계 산과학, 컴퓨터공학, 산업공학, 경제학, 경영학 등 유관분야	eau@kist.re.kr			
	계산과학연구센터	자연어처리를 이용한 이차전지 소재 데이 터 수집 (PostDoc 1인 / 인턴 1인)	8-2	2	자연어처리기법 및 거대언어모델 (GPT 등)을 이용하여 이차 전지 관련 논문으로부터 자동으로 배터리의 구성 및 성능, 소 제의 합성법 및 물성을 주출하는 모델 개발	- 박사후과장: 소재, 화학, 물리, 컴퓨터 관련 전공 자 중 제일원리계산 혹은 기계학습을 활용한 연 구 유경험자 - 인턴: 소재, 화학, 물리, 컴퓨터 관련 전공자 신소재, 전산, 전자공학, 화학, 화학 공학, 물리 관 면 전공자	blee89@kistre.kr			
	나노포토닉스연구센터	반도체/에너지/분광학 (포닥/인턴)	8-3	2	1. 하이브리드 반도체 소재의 전하거동 및 분광학 연구 2. 나노소재 기반 에너지 변환 (광전) 소자 연구	박사/학,석사(우대) 학위 소지자 재료, 화학, 물리 등	isk@kist.re.kr			
	물질구조제어연구센터	전기화학촉매 응용 연구 (Post-Doc.)	8-4	1	- 나노 구조가 제어된 전극 소재의 전기화학용 전극화 연구 수행 - 신규 합성 소재의 미세구조변화에 따른 전기화학적 거동 분 석 - 에너지 및 전기화학촉매 전극 응용 연구 (HER, OER, ORR, CER 등) - 전기화학 반응 및 거동 분석을 동한 소재 특성 최적화	박사학위 소지자 및 박사학위 취득예정자 화학, 화학공학, 신소제공학, 재료공학 등	jongbeom@kistre.kr			
첨단소재기술연구본부	물질구조제어연구센터	광기능성 나노입자(perovskite 양자점/별 광나노입자) 합성 및 응용 (Post-Doc/인턴)	8-5	2	- 광기능성 나노입자 (영자점/배로보스카이트/나노형광체 등) 합성 및 응용(디스플레이, 광천소자 등) - 발광 나노소재 광특성 양상 및 제어 연구 - 나노소재 구조제어 연구	- Post-Doc 박사학위 소지자 및 박사학위 취득 예정자 - 인턴: 학사/석사 학위소지자 및 학위 취득 예정 자 - 전공: 재료, 신소제, 화학, 화공, 물리, 전자 등, 혹은 관련 분야 전공자	msekorea@kist.re.kr			
	물질구조제어연구센터	기능성 생분해고분자합성 연구 (포닥/인턴)	8-6	2	바이오 및 에너지 소재용 생분해 고분자 합성	- 바이오 및 에너지 분야 응용을 위한 생분해 고 분자 합성 - 인턴(마셔서(우대)), Post-doc(박사/학위취득 5 년 이내) 화학,고분자,재료공학	scho@kist.re.kr			
	센서시스템연구센터	디지털웹스케어 (인턴)	8-7	1	직무 내용 : 자폐 아동의 증상 완화를 위한 감각통합지료용 스마트 블록 기반 혼합함(+W/SW) 디지털 지료제 기술을 위한 문헌 프로그램은 근텐츠 개발 - 이상 행동 한점을 위한 스마트블록 기반 사회성 향상 프로그램용 높이 콘텐츠 개발(15등 이상) - 이상 행동 완화를 위한 스마트 블록 기반 사회성 향상 프로그램 평가 도구 개발	- ABA 행동 지료 전문가 - 자폐 분야 인지 심리 지료 전문가 인지심리학/행동 지료	slee@kist.re.kr			
	센서시스템연구센터	미세유체공학, 현탁계 유체역학 및 유변학 (인턴)	8-8	1	- Complex Microfluidics 기반의 나노바이오 센싱 및 계면동 전기 응용 연구 - 현탁계 미세/생체유체의 구조적/동적/유변학적 특성 관련 실험 혹은 계산 연구	- 석사/학사(예정자 포함) 미세유체공학, 현탁계 유체역학 및 유변학 관련	mschun@kist.re.kr			
	소프트용합소재연구센터	소프트 전자시스템, 소프트 로봇, 마이크로 로봇 (Post-Doc)	8-8	1	- 자기조립 기반 자성 유연복합소재 및 고분자 개발 - 자성복합소재 기반 자동형 소프트전자소자 및 시스템 개발 - 자성복합소재 기반 지능형 소프트 로봇 및 마이크로로봇 기술 개발	- 소프트 전자, 소프트 로봇, 또는 생체의료용 마 이크로로봇 분야 연구 경험자 - 신소제/기계/전기전자 전공 박사막위 소지자 및 취득 예정자 신소재공학, 기계공학, 전기전자공학	junghwan@kist.re.kr			

				청정신기	술연구본부		
	수소-연료전지연구센터	고성능 고분자 전해질 수전해 MEA 개발 및 연료전지 전국/MEA 개발분석 (Post-doc/인턴)	9-1	2	교본자전해질(PEM) 기반 전기화학 수소생산 정치인 수전해 및 연료전자용 고성능/고내구 전극 소재 (축매 5) 및 막전극 접합체 개발 연구를 수행할 예정인. 고성능/고내구 소재 개발 및 개발 소재를 적용한 장치의 성능 및 내구성 광구를 통해 개발소재의 작동 및 말화 메기지율 규명하고, 이를 개선하 기 위한 전략을 도출하는 연구/개발을 수행 할 예정임	관련 전공 학석(우대)/박사 이상 관련 전공	parkhy@kist.re.kr
	수소-연료전지연구센터	고분자 전해질 수전해용 고효율 축매 개발 및 MEA 평가/분석 (post.doc)	9-2	1	교본자전해질(PEM) 기반 전기화학 수소생산 정치인 수전해 정치의 핵심소재 (전국, 흑매 등) 개발 업무를 수행할 예정임 특히, 개발 소재의 구조적 분석을 통해 활성인자와 반응메커 내즘을 밝히는 연구를 수행할 예정임, 나아가, 개발 소재를 활 용한 역전국업체를 개발하여 성능 및 내구를 평가/분석하 는 연구를 수행할 예정임.	관련 전공 박사 이상 관련 전공	brseo@kist.re.kr
	수소-연료전지연구센터	중고운형 PEM용 전극설계 및 MEA 제조 및 평가 (Post-doc/인턴)	9-3	4	새로운 개념이 도입된 건물용 및 중대형 상용자용 양이온 소 제 개발 및 건물용 고은편 연료전지 MEA 개발 그리고 수천해 용 저은용 응이온 소재 개발 연구분자 소재의 상용성을 확보 하기 위해 MEA 전기화학 분석과 내구성 평가 연구 분자 화학 및 고은용 고분자 합성 소재, 기능성 고분자 소재 합성 외에도 MEA 제조	관련 전공 학사 이상 관련 전공	sylee5406@kistre.kr
	수소·연료전지연구센터	고성능 고분자 전해질 수전해 및 연료전지 소재 및 MEA 개발 (Post-doc/인턴)	9-4	2	교본자전해질(PEM) 수전해 경치의 고성능 저가와 및 발전용 PEM연료전지 고효율화를 위한 연구/개발을 수행할 여행임, 수전해 선소국 귀금속 사용량 저김을 위한 저귀금속 전국소 제 및 비귀금속제 수소국 전국소제 개발, 면료전지 산소국 고 성능화를 통한 수전해 강지 및 연료전지 전국 소재의 가격저 강을 위한 연구/개발을 수행할 예정임	관련 전공 학석(우대)/박사 이상 관련 전공	jhjang@kistre.kr
	수소-연료전지연구센터	Development of advanced membranes and their characterization (Post-doc.)	9-5	1	Fabrication of advanced membranes for use in water electrolysers. Characterisation of membrane properties; Preparation of presentations, patents and publications; Presentation at conferences; support with administrative work; more information on the group and its activities: https://sites.google.com/site/dirkhenkensmeier/home	관련 전공 박사 이상 관련 전공	henkensmeier@kist.re.kr
청정신기술연구분부	에너지소재연구센터	산화물 기반 차세대 전자/에너지 소자소 재 분석 및 응용 (Post-doc)	9-6	2	받아): 고이온 전도체 산화물 박약제작 및 응용 하기의 프로 제트 중 핵 1-2 하여 참여 및 리드 - 다양한 이온 소재를 적용한 자세대 인공지능형 산화물 박약 소자 제작 및 응용 - 초고이온 전도체의 연료전지 및 수전해 소자 작용 - 박약형 자세대 이차전지 제작 및 응용 분야): (실시간) 투과전자한미경을 활용한 차세대 전자/에너지 소자,소재의 구조 분석 하기의 프로젝트 중 핵 1-2 하여 참여 및 리드 - 실시간 투과전자한미경 점을 및 확립 - 자세대 인공지능형 전자소자 구조 분석 및 구동원리 규명 - 초고이온 전도체 역용 연료권지 또는 수전해 소자 분석 - 자세대 이차전지 소재 분석 및 응용	* 관련 연구 박사 학위 소지자 - 분야1. 산화물 박막 중작 연구 경험자 우대 - 분야1. 산화군 학명 중을 선화물 등 소제 분석을 전공 또는 경험자 우대 물리/재료/화학/화공 또는 관련전공자	dkwon@kistre.kr
	에너지소재연구센터	금속 소재의 실시간 구조 변화 분석 (Post-Doc.)	9-7	1	- 미세구조 분석 기법을 활용한 수소·금속 간 성호작용 규명 연구 - 합급 주조, 열처리, 본세 등의 공정을 동안 시편 준비 (산화 결계 소재, T계 수소저장소재 및 Fe계 구조용 금속 시편 등) - 금속 내 수소 름 방울 거동의 in situ/ex situ 분석을 위한 미 소 시편 준비 (FIB 활용) 등	-학위 : 박사학위 소지자 -천공 : 재료공학, 신소재공학, 금속공학 및 관련 전공 -SEM, XRD를 활용한 금속 재료 연구 유경험자	jinwookim@kistre.kr
	에너지소재연구센터	고온 노출 금속소재의 미세조직 분석 (Post-Doc.)	9-8	1	고온 크리프 실험 후 내열 금속의 미세조직 분석 등	-학위: 박사 -전공: 재료공학, 신소재공학, 화학공학 또는 채 용분야 관련 전공자	jinyoo@kist.re.kr
	에너지소재연구센터	재료구조/물성 평가 및 해석 (Post-Doc/인턴)	9-9	2	교체산화물 전해질/전국 소재 내 결합생성 및 이온이동 현상 연구	산화물 이온/혼합전도체 물성 평가 및 해석 유경 참자 (전산모사 관련 학위자 포함) 재료, 화학공학, 물리화학	jongho@kist.re.kr
	에너지소재연구센터	세라믹 전기화학전지 (Post-Doc)	9-10	1	고체산화물 전기화확전지 전공자 채용을 통한 고효율 프로톤 세라믹 수전해전지 개발	고제산화물전지 제조/평가 유경험자 기계공학, 화학공학, 재료공학	hiji@kist.re.kr
	에너지저장연구센터	차세대 이차전지 전국 (Post-Doc.)	9-11	1	1) 소돔이온전지용 나노구조 코팅 기반 고용량 양극 및 음극 소제 합성 기술 연구 2) 소돔전고체전지용 황화물게 고체전해질 소제 합성 공정 연 구 3) 소돔전고체전지 단위셀, 개발 양극/음극 조합 풀셀 제조 및 독성 평가 기술 연구		kimsok82@kistre.kr

	에너지저장연구센터	전고체전지 및 고용량 이차전지 양극 소재 (Post-Doc.)	9-12	1	기후환경연구개발사업 및 기관고유사업으로 수행할 전고표전 지 개발과 고용량 이저전지 양국 관련하여 원전소재 기술 개 발 관련 연구를 수행할 예정이며, 관련 연구내용은 아래와 같 응. - 고체전해질 소재 합성 및 분석 - 그래핀 소재 기반 전국 연구 개발 - 음극소재 및 계만제어 기술 개발 - 논문 작성, 학회 발표 - 관련 분야 과제 수행 및 과제 기획 보조	Post-doc. : 관련분야 전공 박사학위 소지자 신소재공학과 또는 관련 전공	kychung@kist.re.kr
	차세대태양전지연구센터	광전 소자용 소재 개발 (Post-Doc./인턴)	9-13	2	(1) 광전 소자용 소재 개발 - 광전 소자용 유기 및 무기 소재 개발 및 분석 (2) 광전 소자 분석 및 공정 개발 - 광전 소자 제작 및 분석 (전기적 분석, 광학적 분석, 박막 분 석) - 광전 소자 용역공정 기술 개발	화공/화학/재료/전자/물리 등 관련 분야 학사 줄 업 이상	hjson@kistre.kr
	차세대태양전지연구센터	퀀텀닷 소재기술 (태양전지, 광검출기) (Post-Doc.)	9-14	1	친환경 소제기반 광전소자 기술 - Non-toxic IR 퀀텀닷 소재합성 기술 개발 - Non-toxic 퀀텀닷 광전소자기술 개발	박사학위 소지자, 퀀텀닷소제합성 및 소자제작 경험 보유자 물리학과, 화학공학과, 신소재공학과	hyu@kist.re.kr
	차세대태양전지연구센터	진공중작 폐로브스카이트 태양전지 개발 (Post-Doc/인턴)	9-15	2	(i) 진공증작 페로브스카이트 태양전지 - 진공증작 기반 페로브스카이트 박막 조성제어 및 결정성 항상 - 고효율 점가제 기상처리기법 개발 (2) 실리콘/페로브스카이트, CIGS/페로브스카이트 텐덤 태양 전지 - 양면수광구조 페로브스카이트 상부센 개발 - 무슨실 점합 초고효율 텐덤 태양전지 개발	관련 전공 학사학위 이상 신소제, 재료, 화공, 물리, 화학 등 관련분야 천공 자	dklee@kist.re.kr
청정신기술연구본부	청정에너지연구센터	이산화탄소 동시포집전환 (Post-doc.)	9-16	2	[적무내용 별 각 1인씩 채용] 1. 공기 중 이산화면소 동시 포집·전환 공정 초구조 최적화 및 경제성 및 환경성 평가(12) - Aspen을 활용하여 공정 설계 및 최적화 - 경제성(1EA) 및 환경성(1CA) 평가 - 전역민진도 본석 및 시나리오 분석을 통해 유망 동시 전환 기술 발골 - 호육적인 최적화 방법론 개발 2. 기계학습 기술 활용 흡수제 및 전해질 스크리닝 (1인) 가. 고제전해질 스크리닝을 위한 인공자능 기술 개발 (전고제 배터리 개발) - 고제전환절 database를 활용하여 높은 ionic conductivity 를 가지는 물질 스크리닝 - 오토막 하는데 이후 모든데 함을 함을 하여 주요 descriptor 혹은 그 조합을 규명 - 실험 팀과 협업하여 모델 validation 나. 아민흡수제 스크리닝을 위한 인공 지능 기술 개발 - 아민흡수제 스크리닝을 위한 인공 지능 기술 개발 - 아민흡수제 database를 활용하여 직접 공기 이산화	화학공학, 화학, 화공생명공학, 흑매 및 반응공학, 유기화학, 고분자공학, 환경공학 관련 전공 박사 학위 소지자.	won@kist.re.kr
	청정에너지연구센터	개산과학 활용 반응 메커니즘 규명 (Post-doc.)	9-17	1	아민 흡수제에 흡수된 이산화탄소의 직접 전환 반응 때커니증 규명 - DFT 제산을 이용한 에너지계산을 통해 때만을 생산 반응 때 커니즘 규명 - 이산화탄소환원 전극에서 아민 흡수제의 독성과 이산화탄 소 전환 반응 선택도 간의 관계 규명 - 실명 과학자와 합업을 통해 계산 결과 validation	화약공학, 화학, 화공생명공학, 촉매 및 반응공학, 유기화학, 고분자공학, 환경공학 관련 전공 박사 학위 소지자.	won@kist.re.kr
	청정에너지연구센터	미생물을 이용한 유기산, 알코올, 바이오폴 리며 생산 (Post-doc. 및 인턴)	9-18	2	- 대사공학, 합성생물학 기반 재조합 미생물 개발 및 최적학 - 오믹스 본석을 통한 미생물 대사회로 조절 분석 및 재설계 - 이산화탄소와 바이오메스 동시소모형 미생물 및 발효 기술 개발 - 타켓 소재 생산 최적화를 위한 배양조건 탐색 및 최적화	Post-doc. : 관련분야 전공 박사학위 소지자 인탄: 관련분야 전공 학/석사(우대) 학위 소지자 생명공학, 생물화공, 환경공학, 대사공학 등	won@kist.re.kr
	청정에너지연구센터	전기화학적 이산화탄소 전환 촉매 소재 및 반응 시스템 개발 (Post-Doc)	9-19	1	- 전기화학적 이산화탄소 전환 기술 개발 - 전기화학 촉매 반응 및 소재 개발 - Reactive capture and conversion 기술 개발	- 박사 학위 소지자 (또는 졸업 예정자) - 전공: 화학, 화학공학, 재료공학 등 관련 분야 화학, 화학공학, 재료공학 등 관련 분야	dahye0803@kist.re.kr
	청정에너지연구센터	유기전기합성 기반의 교부가 화합물 생산 기술 개별 (Post-Doc)	9-20	1	- 유기전기합성 반응 설계, 전극독매/반응기 개발 - 전기회학적 활성을 가진 금속-유기복합체 축배 합성 - 실시간 IR/Raman/X-선 분석을 이용한 전기화학 반응 원리규명 (연구실 홈페이지 참조 https://www.dnklee.com/)	- 화학, 화공, 신소재 또는 관련전공 박사학위 소 지자 (또는 졸업예정자) - 유기업성 경험자 및 전문지식 보유자 우대 (전 기화학 경험이 없어도 무관함) 화학, 화공, 신소재 또는 관련 전공	dnklee@kist.re.kr
	수소·연료전지연구센터	1.전기화학적 암모니아 합성 촉매, 수소분 리막 및 프로톤 전도성 전해질 신소재 개 발 (Post-doc. 또는 인턴)	9-21	1	1) Ru 기반 암모니아 합성 촉매 신소재 개발 2) Pd 도평 BaCeO3 페로브스카이트 기반 프로톤 전도성 전해 질 신소재 개발을 통한 전기화학적 암모니아 막 반응기 개발	관련 전공 박사 또는 학/석사(우대) 학위 소지자 및 예정자 관련 전공	shchoi@kist.re.kr
	수소·연료전지연구센터	2.고은 세라믹 기반 연료전지 및 고은 프로 톤 수전해 (PCFC, PCEC) (Post-doc. 또는 인턴)	9-22	1	1) 도핑 Pr2NiO4 (Ruddelsden-Popper phase) 기반 프로톤 수 전해 (PCEC)의 산소발생전극(OER) 축매 신소재 개발 2) Pd 도핑 BaCeO3 페로브스카이트 기반 프로톤 전도성 전해 질 신소재 개발을 통한 PCEC 단전지 제작 및 특성 평가	관련 전공 박사 또는 학/석사(우대) 학위 소지자 및 예정자	shchoi@kist.re.kr

	연구자원 데이터지원본부										
	도핑콘트롬센터	GC-MS, LC-MS, immunoassay 기반 도핑 시료분석 및 시료관리, 형광현미경 및 혈 구분석기 활용 혈구 분석 (인턴 or Post-Doc.)	10-1	3	- GC-MS, LC-MS, immunoassay 기반 도핑시료분석 및 시료 관리 - 형광현미경 및 혈구분석기 활용 혈구분석	- 학사 이상 (예정자 포함) 생명공학, 화학, 약학 등 이공계 전 분야	rrd@kist.re.kr				
• 연구자원 데이터 지원본부	연구동물자원센터	줄기세포 배양 및 장기 모사체 분화 유도 연구 (인턴)	10-2	1	- 인체 유래 즐기 세포 (hiPSC) 배양 - 에잉 조건에 따른 장기 모사체 분화 유도 및 특성 연구 - 줄기 세포의 유전자 조절에 따른 장기 모사체 기능 고도화	- 학/석사(우대) (예정자 포함) 세포생물학, 줄기세포의학 관련 분야					
	특성분석-데이터센터	무기분석 장비를 활용한 원내의 분석 지원 (인턴 or Post-Doc.)	10-3	3	- 원내의 일착 연구 지원: 원내외에서 의뢰된 다양한 시로 중 ICPOES, SI, ICPMS, HPLC-ICPMS 등 무기분석 장비를 이용하 여, 성도 있는 일착 및 복합 분석을 수행하여 학술적인 실적을 목표로 하는 공동연구 수행	- 학사 이상 (예정자 포함) 화학/분석화학 및 관련학과					
			전	자파솔루션	년융합연구단	<u> </u>					
	전자파솔루션용합연구단	기능성 고분자 및 복합소재 (Post-Doc.)	11-1	2	- 자가회복, 외부 자극에 의한 분해성 제이, 단량체화 등 진환 경 기능성이 부여된 신규 교분자 소재 개발 - 나노 소재의 표면 제어 등을 통한 고본자와의 진화도 제어 - 제조된 복합 소재의 기계적, 전기적 특성 등 평가	박사 재료공학, 고분자공학, 화학공학, 화학	takim717@kist.re.kr				
전자파술루선 용합연구단	전자파솔루션용합연구단	이차원 소재의 전하 수송 특성 평가 및 조 절/이차원 나노소재 기반 전도성 대면적 공장 기술 개발/대면적 이차원 전도성 소 재를 이용한 전차파 제이 및 응용 (Post-Doc. 또는 인턴)	11-2	1	1. 목표 이차원 나노 소재의 계면에서의 전하 수송 특성을 평가 및 제어하여 최석화 된 이차원 소재 기반 대면적 필름을 형성하고, 전자파 차례 응용까지 확장 하고자 함. 2. 연구 내용 및 방법 - 이차원 나노 소재의 기계적, 전기화학적 박리를 통해 형성된 나노 소재를 건식 전사 방법 및 여러 방법을 통해 나노 소자를 제작 및 환하 수송 특성의 항상 및 대면적 필름 형성 - 전자파 차례 및 흡수 제어 응용 3. 모집 분야 : 물리학/신소제/전기전자 전공 학사/석사/박사학위 소지자 및 취득 예정자 : 연수기간 만료이전에 상호 협의하에 연수 기간 연장 가능	박사 또는 학/석사(우대)	kcho@kist.re.kr				