2023학년도 2학기 탄소에너지융합공학 수업계획서

- 교과목 정보 전주대학교

교과목명(영문)	탄소에너지융합공학							
학수번호	CCM6034-01		과목구분	전공	수강인원		8	
학점 및 주당시간	3학점 (이론시간:0., 실습시간: 0.)							
주 수강대상		대면/비대	대면/비대면 -					
추천 선수과목				EMail	EMail h		hongsz@jj.ac.kr	
담당교수	홍성주 연구실		전화번호(전화번호(연구실)				
강의시간(강의실)	목1,2,3,4,5,6(공학②206)		강의평가(강의평가(최근1년)				
면담가능교시								

- 수업계획

수업개요 및 목표	열역학, 열전달 기본 지식을 습득하고, 탄소 소재를 통한 열전달 특성을 이해한다. 또한, 신재생에너지의 종류와 특징을 이해하고, 탄소중립에 대한 이론을 습득한다.					
학습준거						
الح ت	주교재					
교재	부교재 및 기타참고자료					
수업방식						
설명식(○)	팀티칭()	원격강의()	사례기반학습()	액션러닝()	개별지도(○)	
실험/실습()	세미나()	협동학습()	2PBL()	TBL()	iClass()	
기타()						

- 프로그램 사용여부

- 성적평가방법(%)

항목	출석	수시 (중간)	기말	과제	태도	퀴즈	추가1	추가2	추가3	추가4	총점
비율	10	0	90	0	0	0	0	0	0	0	100
만점	10	0	90	0	0	0	0	0	0	0	100

- 평가원칙

- 주별 수업내용

주차	내용	수업방식	과제/수행평가
01 주	강의 오리엔테이션 - 학기 중 강의 방향 - 개인 및 팀 세미나 주제 선정 및 배분 - 강의 평가 방식 설명		
02 주	기본 열역학적 이론 - 탄소 열전달 수업 수강의 기초가 되는 열역학적 배경지식의 이해 - 열역학적 사이클의 적용 사례		
03 주	기본 열전달 이론 I - 탄소 열전달 수업 수강의 기초가 되는 열전달 배경지식의 이해 - 탄소소재의 열교환기 적용 사례		
04 주	기본 열전달 이론 II - 탄소 열전달 수업 수강의 기초가 되는 열전달 배경지식의 이해 - 탄소소재의 열교환기 적용 사례		
05 주	기본 유체역학적 이론 - 탄소 열전달 수업 수강의 기초가 되는 유체역학 배경지식의 이해 - 유체역학적 메커니즘의 이해		
06 주	탄소 및 복합소재를 통한 열전달 l - Graphene, CNT 등의 탄소 소재의 열전달 표면 적용 특성 - 탄소 복합소재 표면 특성에 따른 열전달 특성		
07 주	탄소 및 복합소재를 통한 열전달 II - Graphene, CNT 등의 탄소 소재의 열전달 표면 적용 특성 - 탄소 복합소재 표면 특성에 따른 열전달 특성		
08 주	중간고사		
09 주	전산유체역학의 이해 I - 전산유체역학(Computational Fluid Dynamics) 기본배경지식의 이해 - CFD 소프트웨어를 통한 열유동해석		
10 주	전산유체역학의 이해 II - 전산유체역학(Computational Fluid Dynamics) 심화 - CFD 소프트웨어를 통한 열유동해석		
11 주	전산유체역학의 이해 III - 전산유체역학(Computational Fluid Dynamics) 심화 - CFD 소프트웨어를 통한 열유동해석		
12 주	개인(팀) 프로젝트 l - 탄소 열전달 관련 논문 연구 및 사례 발표 - 탄소 복합소재 성분에 따른 열적 특성 변화 사례 발표		
13 주	개인(팀) 프로젝트 II - 탄소 열전달 관련 논문 연구 및 사례 발표 - 탄소 복합소재 성분에 따른 열적 특성 변화 사례 발표		
14 주	개인(팀) 프로젝트 Ⅲ - 탄소 열전달 관련 논문 연구 및 사례 발표 - 탄소 복합소재 성분에 따른 열적 특성 변화 사례 발표		
15 주	기말고사		

- * 장애학생을 위한 지원 및 조정
 청각: 강의자료(대필도우미) 제공
 지체: 휠체어 접근 가능한 좌석 조정, 강의자료(대 필도우미) 제공
 시각: 강의자료 파일(확대자료, 점자자료 등) 제공
 개별 장애유형에 따른 과제제출, 평가관련 지원 및 조정