Summary: Six Functions, Six Rules, Six Theorems

| Integrals | Six Functions | Derivatives |
| :---: | :---: | :---: |
| $x^{n+1} /(n+1), n \neq-1$ | $x^{n}$ | $n x^{n-1}$ |
| $-\cos x$ | $\sin x$ | $\cos x$ |
| $\sin x$ | $\cos x$ | $-\sin x$ |
| $e^{c x} / c$ | $e^{c x}$ | $c e^{c x}$ |
| $x \ln x-x$ | $\ln x$ | $1 / x$ |
| Ramp function | Step function | Delta function |
|  |  |  |
| 0 | 0 | 0 |

## Six Rules of Differential Calculus

1. The derivative of $\boldsymbol{a} \boldsymbol{f}(\boldsymbol{x})+\boldsymbol{b} \boldsymbol{g}(\boldsymbol{x})$ is $a \frac{d f}{d x}+b \frac{d g}{d x}$

Sum
2. The derivative of $\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{g}(\boldsymbol{x})$ is $f(x) \frac{d g}{d x}+g(x) \frac{d f}{d x}$

Product
3. The derivative of $\frac{\boldsymbol{f}(\boldsymbol{x})}{\boldsymbol{g}(\boldsymbol{x})}$ is $\left(g \frac{d f}{d x}-f \frac{d g}{d x}\right) / g^{2}$

Quotient
4. The derivative of $\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ is $\frac{d f}{d y} \frac{d y}{d x}$ where $y=g(x)$

Chain
5. The derivative of $x=\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{y})$ is $\frac{d x}{d y}=\frac{1}{d y / d x}$

Inverse
6. When $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$, what about $f(x) / g(x)$ ? l'Hôpital $\lim \frac{f(x)}{g(x)}=\lim \frac{d f / d x}{d g / d x}$ if these limits exist. Normally this is $\frac{f^{\prime}(\boldsymbol{a})}{\boldsymbol{g}^{\prime}(\boldsymbol{a})}$

## Fundamental Theorem of Calculus

If $f(x)=\int_{a}^{x} s(t) d t$ then derivative of integral $=\frac{d f}{d x}=s(x)$
If $\frac{d f}{d x}=s(x)$ then integral of derivative $=\int_{a}^{b} s(x) d x=\boldsymbol{f}(\boldsymbol{b})-\boldsymbol{f}(\boldsymbol{a})$
Both parts assume that $s(x)$ is a continuous function.
All Values Theorem Suppose $f(x)$ is a continuous function for $a \leqslant x \leqslant b$. Then on that interval, $f(x)$ reaches its maximum value $M$ and its minimum $m$. And $f(x)$ takes all values between $m$ and $M$ (there are no jumps).

Mean Value Theorem If $f(x)$ has a derivative for $a \leqslant x \leqslant b$ then

$$
\frac{f(b)-f(a)}{b-a}=\frac{d f}{d x}(c) \text { at some } c \text { between } a \text { and } b
$$

"At some moment $c$, instant speed $=$ average speed"
Taylor Series Match all the derivatives $f^{(n)}=d^{n} f / d x^{n}$ at the basepoint $x=a$

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \boldsymbol{f}^{(\boldsymbol{n})}(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})^{\boldsymbol{n}}
\end{aligned}
$$

Stopping at $(x-a)^{n}$ leaves the error $f^{n+1}(c)(x-a)^{n+1} /(n+1)$ !
[ $c$ is somewhere between $a$ and $x][n=0$ is the Mean Value Theorem]

The Taylor series looks best around $a=0 \quad f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^{n}$
Binomial Theorem shows Pascal's triangle


Those are just the Taylor series for $f(x)=(1+x)^{p}$ when $p=1,2,3,4$

$$
\begin{array}{ccccc}
f^{(n)}(x) & =(1+x)^{p} & p(1+x)^{p-1} & p(p-1)(1+x)^{p-2} & \cdots \\
f^{(n)}(0) & = & \mathbf{1} & \boldsymbol{p} & \boldsymbol{p}(\boldsymbol{p}-\mathbf{1})
\end{array} \cdots
$$

Divide by $n!$ to find the Taylor coefficients $=$ Binomial coefficients

$$
\frac{1}{n!} f^{(n)}(0)=\frac{p(p-1) \cdots(p-n+1)}{n(n-1) \cdots(1)}=\frac{p!}{(p-n)!n!}=\binom{p}{n}
$$

The series stops at $x^{n}$ when $p=n$ Infinite series for other $p$
Every $(1+x)^{p}=1+p x+\frac{p(p-1)}{(2)(1)} x^{2}+\frac{p(p-1)(p-2)}{(3)(2)(1)} x^{3}+\cdots$

